徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

表示论

指数 表示论

表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.

162 关系: 域 (數學)基 (線性代數)埃利·嘉当半双线性形式半單李代數半直积卡茨-穆迪代数单射双射双线性映射同构合数向量空间向量空间的维数塞爾伯格跡公式复合函数复数 (数学)实射影空间实数对偶空间对称关系对称群 (n次对称群)尤金·维格纳射影几何射影表示巴拿赫空间不變量理論希尔伯特空间希爾伯特模形式一般线性群幺半群广群亚历山大·格罗滕迪克交換子二次型互質代数代数几何代数簇代数结构代数运算代數同態代數群代數組合學代數閉域仿射空间张量积微分形式微分几何微分算子...微分流形圓群像 (數學)切空间嘉当联络單位元傅里叶变换傅里叶分析傅里叶级数哈尔测度内积空间几何学函子函数商空间 (线性代数)公约数共形場論勞侖茲群矩阵矩阵群矩陣加法矩陣乘法理论物理学範疇 (數學)素数緊群线性代数线性映射组合数学编码理论置換罗伯特·朗兰兹群同態群作用群的展示群環群表示論群概形爱尔兰根纲领結合代數特征 (代数)特征向量特徵標理論階 (群論)菲利克斯·克莱因非奇异方阵類函數行向量與列向量行列式複化西羅定理西格爾模形式解析函数解析数论马施克定理讓-皮埃爾·塞爾豪斯多夫空间黎曼-罗赫定理齐性空间龐加萊群龐特里亞金對偶性霍普夫代數舒尔引理阿贝尔群赫尔曼·外尔钱德拉量子力学量子群自同态自守形式酉矩阵離散群零空间集合 (数学)集合范畴雅可比恒等式Lp空间P進數SL₂(ℝ)抽象代数抽象调和分析投影柏原正樹极大紧子群李代數李群模形式欧几里得空间正交补泛包絡代數泛函分析朗蘭茲綱領有限域有限單群分類戴维·芒福德测度施普林格科学+商业媒体无限群数学数学年刊数学分析数论整数扎里斯基拓扑拓撲空間範疇拓扑学拓扑群态射晶体学 扩展索引 (112 更多) »

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

新!!: 表示论和域 (數學) · 查看更多 »

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

新!!: 表示论和基 (線性代數) · 查看更多 »

埃利·嘉当

埃利·约瑟夫·嘉当(Élie Joseph Cartan,1869年4月9日─1951年5月6日),法国数学家,嘉當又譯卡當、卡坦。他在李群理论及其幾何应用方面奠定基础。他也对数学物理,微分几何、群论做出了重大贡献。.

新!!: 表示论和埃利·嘉当 · 查看更多 »

半双线性形式

在数学中,在复数向量空间V上的半双线性形式是映射V × V → C,它在一个参数上是线性的而在另一个参数上是反线性(半线性)的。比较于双线性形式,它在两个参数上都是线性的;要注意很多作者尤其是在只处理复数情况的时候,把半双线性形式称为双线性形式。 一个主要例子是在复数向量空间上的内积,它不是双线性的而是半双线性的。.

新!!: 表示论和半双线性形式 · 查看更多 »

半單李代數

在數學中,單李代數是除了零和本身之外沒有其它理想的李代數。半單李代數是指能表為單李代數的直和的李代數。若一個李代數能表為半單李代數與阿貝爾李代數的直和,則稱之為約化李代數。半單李代數與約化李代數是李代數研究中的主要對象。 設 \mathfrak 為李代數,其半單性有下述刻劃:.

新!!: 表示论和半單李代數 · 查看更多 »

半直积

在數學中,特別是叫做群論的抽象代數領域中,半直積(semidirect product)是從其中一個是正規子群的兩個子群形成一個群的特定方法。半直積是直積的推廣。半直積是作為集合的笛卡爾積,但帶有特定的乘法運算。.

新!!: 表示论和半直积 · 查看更多 »

卡茨-穆迪代数

卡茨-穆迪代数是一個李代數,通常無限維,其定義自(Victor Kac所謂的)廣義根系。卡茨-穆迪代数的應用遍及數學和理論物理學。.

新!!: 表示论和卡茨-穆迪代数 · 查看更多 »

单射

在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).

新!!: 表示论和单射 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 表示论和双射 · 查看更多 »

双线性映射

在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.

新!!: 表示论和双线性映射 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 表示论和同构 · 查看更多 »

合数

合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.

新!!: 表示论和合数 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 表示论和向量空间 · 查看更多 »

向量空间的维数

数学中, 向量空间 V 的维数是 V 的基底的势或基数.

新!!: 表示论和向量空间的维数 · 查看更多 »

塞爾伯格跡公式

在數學中,塞爾伯格跡公式是非交換調和分析的重要定理之一。此公式表達了齊性空間 G/\Gamma 的函數空間上某類算子的跡數,其中 G 是李群而 \Gamma 是其離散子群。 塞爾伯格在1956年處理了緊黎曼曲面上的拉普拉斯算子的情形。藉由拉普拉斯算子及其冪次,塞爾伯格定義了塞爾伯格ζ函數。此時的公式相似於解析數論關注的「明確公式」:黎曼曲面上的測地線在公式中扮演素數在明確公式裡的角色。 一般而言,塞爾伯格跡公式聯繫了負常數曲率緊曲面上的拉普拉斯算子的譜,以及該曲面上的週期測地線長度。對於環面,塞爾伯格跡公式化為泊松求和公式。.

新!!: 表示论和塞爾伯格跡公式 · 查看更多 »

复合函数

在数学领域,两个函数的复合函数指一个将第一个函数作用于参数,然后再将第二个函数作用于所得结果的函数。 具体来说,给定两个函数f: X → Y和g: Y → Z,其中f的陪域等于g的定义域(称为f、g可复合),则其复合函数h.

新!!: 表示论和复合函数 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 表示论和复数 (数学) · 查看更多 »

实射影空间

数学中,实射影空间(real projective space),记作 RPn,是 Rn+1 中的直线组成的射影空间。它是一个 n 维紧光滑流形,也是格拉斯曼流形的一个特例。.

新!!: 表示论和实射影空间 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 表示论和实数 · 查看更多 »

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

新!!: 表示论和对偶空间 · 查看更多 »

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

新!!: 表示论和对称关系 · 查看更多 »

对称群 (n次对称群)

数学上,集合X上的对称群记作SX或Sym(X)。它的元素是所有X到X自身的双射组成的群。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym(X)。两个函数的复合一般记作f o g,在置换群的表示里简记作fg。 对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。.

新!!: 表示论和对称群 (n次对称群) · 查看更多 »

尤金·维格纳

尤金·保羅·維格納(Eugene Paul Wigner,)原名維格納·帕爾·耶諾(Wigner Pál Jenő),匈牙利-美国理論物理學家及數學家,奠定了量子力學對稱性的理論基礎,在原子核結構的研究上有重要貢獻。 他在純數學領域也有許多重要工作,許多數學定理以其命名。其中維格納定理是量子力學數學表述的重要基石。維格納首先發現了核反應器中的氙-135帶有毒性,這也是為何這種毒性有時被稱作「維格納毒性」。 1963年,由於「在原子核和基本粒子物理理論上的貢獻,尤其是基本對稱原理的發現與應用」,維格納和瑪麗亞·格佩特-梅耶、約翰內斯·延森一同獲得諾貝爾物理學獎。.

新!!: 表示论和尤金·维格纳 · 查看更多 »

射影几何

在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究複投影空間之理論。一些更抽象的數學(包括不變量理論、代數幾何義大利學派,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在綜合幾何的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。.

新!!: 表示论和射影几何 · 查看更多 »

射影表示

在數學中,群 G 在域 F 上的向量空間 V 上的射影表示意指一個群同態 其中 \mathrm(V) 表示向量空間 V 的自同構群,而 F^\times 視為純量積映射 v \mapsto cv,其中 c \in F^\times。 若 V 維度有限,選定基底後可將 \mathrm(V) 理解為 \mathrm(n,F),即 n \times n 階可逆矩陣對正規子群 F^\times \cdot \mathrm_V 之商群。 對於給定的群表示 \rho: G \to \mathrm(V),與商映射 p: \mathrm(V) \to \mathrm(V) 合成後可得到一個射影表示。較常探討的是逆向的問題:如何將一個射影表示 \bar: G \to \mathrm(V) 提升至一個表示 \rho: G \to \mathrm(V),使得 p \circ \rho.

新!!: 表示论和射影表示 · 查看更多 »

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

新!!: 表示论和巴拿赫空间 · 查看更多 »

不變量理論

不變量理論是數學的一個分支,它研究群在代數簇上的作用。不變量理論的古典課題是研究在線性群作用下保持不變的多項式函數。 對於有限群,不變量理論與伽羅瓦理論有密切聯繫,一個較早的結果涉及了對稱群 S_n 在多項式環 F 上的作用:S_n 作用下的不變量構成一個子環,由基本對稱多項式生成,由於基本對稱多項式彼此代數獨立,此不變量環本身也同構於另一多項式環。Chevalley-Shephard-Todd 定理刻劃了其不變量環同構於多項式環的有限群。晚近的研究則更關切算法問題,例如計算不變量環的生成元,或給出其次數的上界。 對於一般的代數群,其不變量理論與線性代數、二次型及行列式理論密切相關。 大衛·蒙福德在1960年代創建了幾何不變量理論,這是構造模空間的有力工具。此理論探討代數簇在群作用下的商空間,並研究軌道的幾何性質。幾何不變量理論與古典不變量理論的關聯如次:考慮域 k 上的仿射代數簇 X.

新!!: 表示论和不變量理論 · 查看更多 »

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

新!!: 表示论和希尔伯特空间 · 查看更多 »

希爾伯特模形式

在數學中,希爾伯特模形式是一類自守形式,對應於全實域 K 及相應的群 \mathrm_ GL(2)_K。這可以視作模形式的一種多變元推廣。當 K.

新!!: 表示论和希爾伯特模形式 · 查看更多 »

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

新!!: 表示论和一般线性群 · 查看更多 »

幺半群

在抽象代數此一數學分支中,幺半群(又稱為單群、亞群、具幺半群或四分之三群)是指一個帶有可結合二元運算和單位元的代數結構。么半群在許多的數學分支中都會出現。在幾何學中,幺半群捉取了函數複合的概念;更確切地,此一概念是從範疇論中抽象出來的,之中的幺半群是個帶有一個物件的範疇。幺半群也常被用來當做電腦科學的堅固代數基礎;在此,變換幺半群和語法幺半群被用來描述有限狀態自動機,而跡幺半群和歷史幺半群則是做為進程演算和並行計算的基礎。幺半群的研究中一些較重要的結論有克羅恩-羅德斯定理和星高問題。.

新!!: 表示论和幺半群 · 查看更多 »

广群

在数学中,尤其在范畴论和同伦论中,广群(groupoid,或勃兰特广群,Brandt groupoid)是对群的概念的抽象化。广群可被视为:.

新!!: 表示论和广群 · 查看更多 »

亚历山大·格罗滕迪克

亚历山大·格罗滕迪克(低地德语:Alexander Grothendieck,Alexandre 或 Alexander Grothendieck;姓氏發音:,,),法國数学家、1966年菲爾茲獎得主,被譽為是20世紀最偉大的數學家。他於德国柏林出生,一生主要在法國成長及居住,但是工作生涯中長時期是無國籍的,1970至1980年代入籍法國。 他是現代代數幾何的奠基者,他的工作極大地拓展了代数几何此一領域,並將交换代数、同调代数、層論以及范畴论的主要概念也納入其基礎中。他的导致了纯粹数学很多领域革命性的进展。 他的多產數學家工作在1949年開始。1958年他獲任為法國高等科學研究所(IHÉS)的研究教授,直至1970年,他發現研究所受到軍事資助,與個人政治理念相反,因而離任。雖然他後來成為蒙彼利埃大學教授,也做了一些私人的數學研究,但他其時已離開數學界,把精力用於政治理想上。他在1988年正式退休後,到比利牛斯山隱居,與世隔絕,直至2014年在法國聖利齊耶離世,享年86歲。.

新!!: 表示论和亚历山大·格罗滕迪克 · 查看更多 »

交換子

在抽象代数中,一个群的交換子(commutator)或换位子是一个二元運算子。设g及h 是 群G中的元素,他們的交換子是g −1 h −1 gh,常記為。只有当g和h符合交换律(即gh.

新!!: 表示论和交換子 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 表示论和二次型 · 查看更多 »

互質

互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.

新!!: 表示论和互質 · 查看更多 »

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

新!!: 表示论和代数 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 表示论和代数几何 · 查看更多 »

代数簇

代数簇,亦作代數多樣體,是代数几何学上多项式集合的公共零点解的集合。代数簇是经典(某种程度上也是现代)代数几何的中心研究对象。 術語簇(variety)取自拉丁语族中詞源(cognate of word)的概念,有基於“同源”而“變形”之意。 历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。在此基础上,希尔伯特零点定理提供了多项式环的理想和仿射空间子集的基本对应。利用零点定理和相关结果,我们能够用代数术语捕捉簇的几何概念,也能够用几何来承载环论中的问题。.

新!!: 表示论和代数簇 · 查看更多 »

代数结构

在泛代数中代数结构是在一种或多种运算下封闭的一个或多个集合。 例如,群、环、域、和格的代数结构。更复杂的结构可以被定义为通过引入多个操作,不同的基础集,或通过改变限定公理。更复杂的代数结构的实例包括向量空间,模和代數 (環論)。关于代数结构的的详细情况,参见各个链接。 一个代数结构包含集合及符合某些公理的运算或关系。 集U上定义二元运算形成的系统称为代数系统,如果对于任意a,b∈U,恒有(a·b)∈U。二元运算可推广至多元运算F,则相应的封闭性要求则改为:对于任意a,b,c,d,……∈U,恒有F(a,b,c,d,……)∈U。有的书上对封闭性未作要求,并称之为广群。运算f是一个从A×B→C的映射,若A.

新!!: 表示论和代数结构 · 查看更多 »

代数运算

代数运算是指包括数的加、减、乘、除、有理数指数幂、开方及其代数式为对象的运算。如以代數幾何圖形的觀念來看,代数运算即是指对两幅或多幅输入图像进行点对点的加减乘除计算而得到输出图像的运算。 3+p.

新!!: 表示论和代数运算 · 查看更多 »

代數同態

在A和B兩個K-多元環之間的同態是指一個函數F:A\rightarrow B,此函數能使得對所有在K內的k和在A內的x、y來說,.

新!!: 表示论和代數同態 · 查看更多 »

代數群

在代數幾何中,一個代數群(或群簇)是一個群是一個代數簇,其簇之乘與逆由正則函數提供。以范畴论描述,一個代數群是一個於代數簇範疇 (數學)中的群對象。 在數學中,域k上的代數群有幾種等價的描述:.

新!!: 表示论和代數群 · 查看更多 »

代數組合學

代數組合學是組合數學中與抽象代數相關的分支,它可以意指解決組合問題的抽象代數方法,或涉及代數問題的組合學方法。相關的數學課題包括了.

新!!: 表示论和代數組合學 · 查看更多 »

代數閉域

在數學上,一個域F被稱作代數閉--,若且唯若任何係數属于F且次數大於零的單變數多項式在F裡至少有一個根。.

新!!: 表示论和代數閉域 · 查看更多 »

仿射空间

仿射空间 (英文: Affine space),又称线性流形,是数学中的几何结构,这种结构是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。.

新!!: 表示论和仿射空间 · 查看更多 »

张量积

在数学中,张量积,记为 \otimes,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积。 例子: \mathbf \otimes \mathbf \rightarrow \beginb_1 \\ b_2 \\ b_3 \\ b_4\end \begina_1 & a_2 & a_3\end.

新!!: 表示论和张量积 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 表示论和微分形式 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 表示论和微分几何 · 查看更多 »

微分算子

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。 当然有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性的情形。.

新!!: 表示论和微分算子 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 表示论和微分流形 · 查看更多 »

圓群

在數學裡,圓群標記為T,為所有模為1之複數所組成的乘法群,即在複數平面上的單位圓。 圓群為所有非零複數所組成之乘法群C×的子群。由于C×可交換,T也是可交換的。 圓群的符號T源自於Tn(n個T的直積)幾何上是個n-環面的此一事實。而圓群即正是一個1-環面。.

新!!: 表示论和圓群 · 查看更多 »

像 (數學)

在数学中,像是一個跟函数相關的用語。.

新!!: 表示论和像 (數學) · 查看更多 »

切空间

切空间(Tangent space)是在某一点所有的切向量组成的线性空间。向量(切向量)存在多种定义。直观的讲,如果所研究的流形(Manifold)是一个三维空间中的曲面,则在每一点的切向量,就是和该曲面相切的向量,切空间就是和该曲面相切的平面。.

新!!: 表示论和切空间 · 查看更多 »

嘉当联络

在数学上,微分几何的结构嘉当联络(Cartan connection)是联络概念的一个推广,由Élie Cartan提出。该方法的一些应用请参见活动标架法,嘉当联络的应用和爱因斯坦-嘉当理论。.

新!!: 表示论和嘉当联络 · 查看更多 »

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

新!!: 表示论和單位元 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 表示论和傅里叶变换 · 查看更多 »

傅里叶分析

傅里叶分析,是数学的一个分支领域。它研究如何将一个函数或者信号表达为基本波形的叠加。它研究并扩展傅里叶级数和傅里叶变换的概念。基本波形称为调和函数,调和分析因此得名。在过去两个世纪中,它已成为一个广泛的主题,并在诸多领域得到广泛应用,如信号处理、量子力学、神经科学等。 定义于Rn上的经典傅里叶变换仍然是一个十分活跃的研究领域,特别是在作用于更一般的对象(例如缓增广义函数)上的傅里叶变换。例如,如果在函数或者信号上加上一个分布f,我们可以试图用f的傅里叶变换来表达这些要求。Paley-Wiener定理就是这样的一个例子。Paley-Wiener定理直接蕴涵如果f是紧支撑的一个非零分布,(这包含紧支撑函数),则其傅里叶变换从不拥有紧支撑。这是在调和分析下的测不准原理的一个非常初等的形式。参看经典调和分析。 在希尔伯特空间,傅里叶级数的研究变得很方便,该空间将调和分析和泛函分析联系起来。.

新!!: 表示论和傅里叶分析 · 查看更多 »

傅里叶级数

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|.

新!!: 表示论和傅里叶级数 · 查看更多 »

哈尔测度

数学分析中,哈尔测度(Haar measure)是赋予局域紧致拓扑群一个“不变体积”并从而定义那些群上的函数的一个积分的一种方法。 这个测度由匈牙利数学家 Alfréd Haar 于1933年发明 。哈尔测度用于数学分析,数论,群论,表示论,估计理论和遍历理论的很多方面。.

新!!: 表示论和哈尔测度 · 查看更多 »

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

新!!: 表示论和内积空间 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 表示论和几何学 · 查看更多 »

函子

在範疇論中,函子是範疇間的一類映射。函子也可以解釋為小範疇範疇內的態射。 函子首先現身於代數拓撲學,其中拓撲空間的連續映射給出相應的代數对象(如基本群、同調群或上同調群)的代數同態。在當代數學中,函子被用來描述各種範疇間的關係。「函子」(英文:Functor)一詞借自哲學家魯道夫·卡爾納普的用語。卡爾納普使用「函子」這一詞和函數之間的相關來類比謂詞和性質之間的相關。對卡爾納普而言,不同於當代範疇論的用法,函子是個語言學的詞彙。對範疇論者來說,函子則是個特別類型的函數。.

新!!: 表示论和函子 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 表示论和函数 · 查看更多 »

商空间 (线性代数)

在线性代数中,一个向量空间V被一个子空间N的商是将N“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作V/N(读作 V模N)。.

新!!: 表示论和商空间 (线性代数) · 查看更多 »

公约数

在数学中,公因数显示着若干个整数之间的数论关系。如果一个数同时是几个数的约数,称这个数为它们的“公约数”;公约数中最大一个的称为最大公约数。 在数学分析的叙述中,如果n和d都是整数而且存在某个整数c,使得n.

新!!: 表示论和公约数 · 查看更多 »

共形場論

共形場論、保角場論 (conformal field theory, CFT) 是量子場論一支,研究共形對稱之量子場組成之結構 (數學上或相通於處臨界點之統計力學模型) 。一此結構亦俗稱「一共形場論」。此論中最為人知者是二維共形場論,因其有一巨大、對應於各全純函數之無限維局部共形變換羣。 共形場論有用於弦論、統計力學、凝態物理。.

新!!: 表示论和共形場論 · 查看更多 »

勞侖茲群

物理學與數學中,勞侖茲群(Lorentz group)為閔可夫斯基時空中,所有勞侖茲變換所構成的群,其涵蓋了除了重力現象以外的所有古典場。勞侖茲群是以荷蘭物理學家亨德里克·勞侖茲來命名。 以下領域的數學形式:.

新!!: 表示论和勞侖茲群 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 表示论和矩阵 · 查看更多 »

矩阵群

在数学中,一个矩阵群(matrix group)G 由某个域 K(通常为了方便是固定的)上可逆方块矩阵组成,群运算分别为矩阵乘法与逆运算。更一般地,我们可考虑一个交换环 R 上 n × n 矩阵(矩阵的大小限制为有限,因任何群可表示为任何域上一个无限矩阵群)。线性群(linear group)是同构于一个域 K 上矩阵群的抽象群,换句话说,在 K 上有一个忠实有限维表示。 任何有限群是线性的,因为利用凯莱定理可以实现为置换矩阵。在无限群中,线性群组成有趣且易于处理的一类。非线性群的例子包括所有“足够大”群;例如一个无限集合的无限对称群。.

新!!: 表示论和矩阵群 · 查看更多 »

矩陣加法

在數學裡,矩陣加法一般是指兩個矩陣把其相對應元素加在一起的運算。但有另一運算也可以認為是一種矩陣的加法。.

新!!: 表示论和矩陣加法 · 查看更多 »

矩陣乘法

這篇文章給出多種矩陣相乘方法的綜述。.

新!!: 表示论和矩陣乘法 · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 表示论和理论物理学 · 查看更多 »

範疇 (數學)

在範疇論中,範疇此一概念代表著一堆數學實體和存在於這些實體間的關係。對範疇的研究允許其公式化抽象結構及保有結構的數學運算等概念。實際上,範疇在現代數學的每個分支之中都會出現,而且是統合這些領域的核心概念。有關範疇自身的研究被稱做是範疇論。.

新!!: 表示论和範疇 (數學) · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 表示论和素数 · 查看更多 »

緊群

在數學中,緊群是其拓撲為緊緻的的拓撲群。緊群是帶有離散拓撲的有限群的自然推廣,并以顯著方式延續了一些性質。緊群的理論已被人们深入研究,與群作用和群表示論有關。 下面我們假定所有群都是豪斯多夫空間,因為這個覆蓋了所有有價值的情況。.

新!!: 表示论和緊群 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 表示论和线性代数 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 表示论和线性映射 · 查看更多 »

组合数学

广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.

新!!: 表示论和组合数学 · 查看更多 »

编码理论

编码理论(Coding theory)是研究编码的性质以及它们在具体应用中的性能的理论。编码用于数据压缩、加密、,最近也用于网络编码中。不同学科(如信息论、電機工程學、数学以及计算机科学)都研究编码是为了设计出高效、可靠的数据传输方法。这通常需要去除冗余并校正(或检测)数据传输中的错误。 编码共分四类:.

新!!: 表示论和编码理论 · 查看更多 »

置換

排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.

新!!: 表示论和置換 · 查看更多 »

罗伯特·朗兰兹

羅伯特·费伦·朗蘭茲(Robert Phelan Langlands,),出生於加拿大不列顛哥倫比亞省新西敏,二十世紀最重要的數學家之一,现任普林斯顿高等研究院教授。他對數論和表示理論具有非凡的洞察力。 朗蘭茲畢業於耶魯大學。1960年代初他建立了約化群的艾森斯坦級數的一般理論。雖然他的工作很出色,但是沒有得到普林斯頓大學的終身教席。之後他隱居土耳其。 自1990年後,朗蘭茲轉攻數學物理。.

新!!: 表示论和罗伯特·朗兰兹 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 表示论和群 · 查看更多 »

群同態

在數學中,給定兩個群(G, *)和(H,·),從 (G, *)到 (H,·)的群同態是函數h: G → H使得對於所有G中的u和v下述等式成立 在這裡,等號左側的群運算*,是G中的運算;而右側的運算·是H中的運算。 從這個性質,可推導出h將G的單位元eG映射到H的單位元eH,并且它還在h(u-1).

新!!: 表示论和群同態 · 查看更多 »

群作用

数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。.

新!!: 表示论和群作用 · 查看更多 »

群的展示

在數學中,展示是定義群的一種方法。通過指定生成元的集合 S 使得這個群的所有元素都可以寫為某些這種生成元的乘積,和這些生成元之間的關係的集合 R。稱 G 有展示 非正式的說,G 有上述展示如果它是 S 所生成的只服從關係 R 的“最自由的群”。正式的說,群 G 被稱為有上述展示如果它同構於 S 上的自由群模以關係 R 生成的正規子群的商群。 作為一個簡單的例子,n 階循環群有展示 這里的 e 是群單位元。它可以等價的寫為 因為把不包括等號的項認為是等于群單位元。這種項叫做關係元(relator),區別於包括等號的關係。 所有群都有一個展示,并且事實上有很多不同的展示;展示經常是描述群結構的最簡潔方式。 一個密切關聯但不同的概念是群的絕對展示。.

新!!: 表示论和群的展示 · 查看更多 »

群環

在抽象代數中,群環是從一個群 G 及交換環 R 構造出的環,通常記為 R 或 RG。其定義為: 其上的 R-線性乘法運算由 e_g \cdot e_h.

新!!: 表示论和群環 · 查看更多 »

群表示論

在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。.

新!!: 表示论和群表示論 · 查看更多 »

群概形

在代數幾何中,一個概形S上的群概形G是範疇\mathrm_S中的群對象。藉由米田信夫引理,我們可以給出兩種刻劃:.

新!!: 表示论和群概形 · 查看更多 »

爱尔兰根纲领

爱尔兰根纲领(Erlanger Programm;Erlangen program)是菲利克斯·克莱因于1872年发表一个深具影响的研究纲领,题为《新几何研究上比较的观点》(Vergleichende Betrachtungen über neuere geometrische Forschungen),由于克莱因那个时候在爱尔兰根而得名。该纲领建议了对于那个时候的几何问题的一种新的解决办法。.

新!!: 表示论和爱尔兰根纲领 · 查看更多 »

結合代數

在數學裡,結合代數是指一向量空間(或更一般地,一模),其允許向量有具分配律和結合律的乘法。因此,它為一特殊的代數。結合代數,是一種代數系統,類似於群、環、域,而更接近於環。仿照由實數來構造複數的方法,可用複數來構造新的數。.

新!!: 表示论和結合代數 · 查看更多 »

特征 (代数)

在数学中,环R的特征被定义为最小的正整数n使得 这里的na被定义为 如果不存在这样的n,R的特征被定义为0。R的特征经常指示为char(R)。 环R的特征可以等价的定义为唯一的自然数n使得nZ是映射1到1R的从Z到R的唯一的环同态的核。另一个等价的定义:R的特征是唯一的自然数n使得R包含同构于商环Z/nZ的子环。.

新!!: 表示论和特征 (代数) · 查看更多 »

特征向量

#重定向 特征值和特征向量.

新!!: 表示论和特征向量 · 查看更多 »

特徵標理論

在數學裡,尤其是在群表示理論裡,一個群表示的特徵標(character)是指一個將群的每個元素連結至表示空間這個域內的每個元素之函數。特徵標蘊藏著群的許多重要性質,且因此可以用來做群的研究。 特徵標理論是對有限簡單群分類的一個有重要的工具。在范特-湯普遜定理證明接近一半的地方會有一個用到特徵標的複雜計算。另外還有一些較簡單但一樣重要的結論需用在特徵標理論,如伯恩賽德定理及理查·布勞爾和鈴木通夫所證出之定理,此定理表示有限簡單群不會有一個為廣義四元群的西洛2-子群。.

新!!: 表示论和特徵標理論 · 查看更多 »

階 (群論)

在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.

新!!: 表示论和階 (群論) · 查看更多 »

菲利克斯·克莱因

菲利克斯·克莱因(Felix Klein,),德国数学家。 “克莱因”(Klein)这个姓氏在德文中是“小”的意思。“菲利克斯”(Felix)则源于拉丁文,意为“幸运儿”。.

新!!: 表示论和菲利克斯·克莱因 · 查看更多 »

非奇异方阵

若方块矩阵A\,满足条件\left|A\right|(\rm(A))\ne0,则称A\,为非奇异方阵,否则称为奇异方阵。.

新!!: 表示论和非奇异方阵 · 查看更多 »

類函數

没有描述。

新!!: 表示论和類函數 · 查看更多 »

行向量與列向量

在 线性代数中,列向量 / 排矩阵 是一个 m × 1 矩阵,m 為任意正整數,例如: 此外,行向量 / 行矩阵 是一个 1 × m 矩阵,m為任意正整數,例如: 黑体字 \mathbf 用于表示行向量或列向量。 行向量的转置(以T表示)是列向量: 而列向量的转置就是行向量: 集合所有的行矢量的 向量空间 称为行空间。同样地,集合所有列矢量的向量空间称为列空间。行列空间的尺寸等的条目数量的行中的或列的矢量。 列空間可以看作是行空間的雙重空間,因為列向量空間上的任何線性函數都可以唯一地表示為具有特定行向量的內積。.

新!!: 表示论和行向量與列向量 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 表示论和行列式 · 查看更多 »

複化

數學中,實數域上的向量空間V的複化是在複數域上對應的向量空間VC,就是說它有與V相同的維數,V在實數域上的基可以作為VC在複數域上的基。 例如設V包含m×n實矩陣,則VC包含m×n複矩陣。 不依賴於基的定義是取V和複數在實域上的張量積: 複向量空間V^C有額外結構:典範複共軛運算\phi\ 。因為V以v\mapsto v\otimes 1包含在V^C內,複共軛運算可定義為\phi(v\otimes z).

新!!: 表示论和複化 · 查看更多 »

西羅定理

在數學裡,尤其是在群論內,西羅(Sylow)定理(以彼得·盧德維格·梅德爾·西羅來命名,或稱西洛定理)為拉格朗日定理的部份相反,拉格朗日定理敘述著若H是一個有限群G的子群,則H的目會整除G的目。西洛定理則保證,對於G之目的某些因數,會有對應此些因數的子群存在著,且會給出有關此類子群之數目的相關訊息。.

新!!: 表示论和西羅定理 · 查看更多 »

西格爾模形式

在數學中,西格爾模形式是辛群上的自守形式。西格爾模形式是西格爾上半平面上的一類多變元全純函數,模形式是其特例。在模空間的意義下,若模形式對應到橢圓曲線,則西格爾模形式便對應更廣的阿貝爾簇。 卡爾·西格爾在1930年代引入這個概念,本意在以解析數論處理二次型的問題。西格爾模形式後來也用於代數幾何、橢圓上同調及某些物理學問題,例如共形場論。.

新!!: 表示论和西格爾模形式 · 查看更多 »

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

新!!: 表示论和解析函数 · 查看更多 »

解析数论

解析数论(analytic number theory),為數論中的分支,它使用由数学分析中發展出的方法,作为工具,来解决数论中的问题。它首次出現在數學家狄利克雷在1837年導入狄利克雷L函數,來証明狄利克雷定理。解析数论的成果中,較廣為人知的是在質數(例如質數定理及黎曼ζ函數)及(例如哥德巴赫猜想及華林問題)。.

新!!: 表示论和解析数论 · 查看更多 »

马施克定理

在代数中,马施克定理是有限群表示论中基本的定理之一。.

新!!: 表示论和马施克定理 · 查看更多 »

讓-皮埃爾·塞爾

讓-皮埃爾·塞爾(Jean-Pierre Serre,),法國數學家,主要貢獻的領域是拓撲學、代數幾何與數論。他曾獲頒許多數學獎項,包括1954年的費爾茲獎與2003年的阿貝爾獎。.

新!!: 表示论和讓-皮埃爾·塞爾 · 查看更多 »

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

新!!: 表示论和豪斯多夫空间 · 查看更多 »

在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.

新!!: 表示论和跡 · 查看更多 »

黎曼-罗赫定理

黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。.

新!!: 表示论和黎曼-罗赫定理 · 查看更多 »

齐性空间

在数学,特别是李群、代数群与拓扑群的理论中,关于群G的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间X,G可传递性作用在X上,G中的元素稱之為X的對稱。一个特例是群G就是空间X的自同構群,這裡自同構群可以是等矩同構群、微分同肧群或是同肧群。在這些例子中,如果直觉想成X于任何地方局部看起来一样,則X是齐性的。像是等矩同構(剛體幾何)、微分同肧(微分幾何)或是同肧(拓撲)。一些作者要求G的作用是有效的(或忠实),不过本文并不要求这样。从而X上存在可以想象为保持X上相同“几何结构”的一个群作用,使X成为一个单''G''-轨道。.

新!!: 表示论和齐性空间 · 查看更多 »

龐加萊群

在物理學與數學上,龐加萊群(Poincaré group)是狹義相對論中閔可夫斯基時空的等距同構群,由赫爾曼·閔可夫斯基引進,龐加萊群是以法國數學家亨利·龐加萊命名。它是一種有10個生成元的非阿貝爾群,在物理學上有着基礎級別的重要性。.

新!!: 表示论和龐加萊群 · 查看更多 »

龐特里亞金對偶性

在數學上,特別是在調和分析與拓撲群的理論中,龐特里雅金對偶定理解釋了傅立葉變換的一般性質。它統合了實數線上或有限阿貝爾群上的一些結果,如:.

新!!: 表示论和龐特里亞金對偶性 · 查看更多 »

霍普夫代數

在數學中,霍普夫代數是一類雙代數,亦即具有相容的結合代數與餘代數結構的向量空間,配上一個對極映射,後者推廣了群上的逆元運算 g \mapsto g^。霍普夫代數以數學家海因茨·霍普夫命名,此類結構廣見於代數拓撲、群概形、群論、量子群等數學領域。.

新!!: 表示论和霍普夫代數 · 查看更多 »

舒尔引理

在数学中,舒尔引理(Schur's lemma)是群与代数的表示论中一个初等但非常有用的命题。在群的情形是说,如果M与N是群G的两个有限维不可约表示,φ是从M到N的与群作用可交换的线性映射,那么φ 可逆或φ.

新!!: 表示论和舒尔引理 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 表示论和阿贝尔群 · 查看更多 »

赫尔曼·外尔

赫尔曼·克劳斯·胡戈·外尔(Hermann Klaus Hugo Weyl,)是一位德国数学家,物理学家和哲学家。 尽管他的大部分工作时间是在瑞士苏黎世和美国普林斯顿度过的,他仍被认为传承了以大卫·希尔伯特和赫尔曼·闵可夫斯基为代表的哥廷根大学学派的数学传统。 他的研究工作在理论物理上和在纯数学领域(如数论)等都有着一样杰出的贡献。他是20世纪最有影响力的数学家之一,也是普林斯顿高等研究院早期的重要成员。 外尔发表过的作品涉及时间、空间、物质、哲学、逻辑、对称性和数学史。 他是最早把广义相对论和电磁理论结合的人之一。当他同时代的数学家对昂利·庞加莱和希尔伯特的对数学的广泛涉猎的重要性缺乏重视的时候,外尔走得比任何人更远。迈克尔·阿蒂亚曾评价,他开始研究一个数学题目的时候,经常发现外尔已经在他之前有所贡献。(The Mathematical Intelligencer (1984), vol.6 no.1).

新!!: 表示论和赫尔曼·外尔 · 查看更多 »

钱德拉

哈里希-钱德拉(Harish-Chandra,1923年10月11日-1983年10月16日),是印度裔美國数学家、物理学家。生于英屬印度坎普爾(今屬北方邦),曾担任著名物理学家狄拉克(量子力学的创始人之一)的助手,与外尔、韦伊、扎里斯基等大数学家都有过接触。哈里希-钱德拉在李群表示论方面做了许多开创性的工作,这使得他1954和1966年两度在国际数学家大会作报告。1973年成为英国皇家学会会员,1974年获得印度科学院“拉马努金奖”。著名美籍加拿大数学家罗伯特·朗兰兹在评论哈里希-钱德拉时说:“他从事数学相对较晚,且有很多数学领域他从未认真涉猎过.

新!!: 表示论和钱德拉 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 表示论和量子力学 · 查看更多 »

量子群

在數學物理中,量子群(quantum group)是一系列代數結構的通稱,是霍普夫代數 之特例,可以看作q-量子化的李代數。雖其名中有一「羣」字,但量子羣不是羣。量子羣表示理論可產生杨-巴克斯特方程解;以此可以構造紐結的不變量。.

新!!: 表示论和量子群 · 查看更多 »

自同态

在数学中,自同态是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。 在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。 X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含: |- | align.

新!!: 表示论和自同态 · 查看更多 »

自守形式

數學上所謂的自守形式,是一類特別的複變數函數,並在某個離散變換群下滿足由自守因子描述之變換規律。模形式與馬斯形式是其特例。由自守形式可定義自守表示,嚴格言之,自守表示並非尋常意義下的群表示,而是整體赫克代數上的模。 龐加萊在1880年代曾研究過自守形式,他稱之為富克斯函數。郎蘭茲綱領探討自守表示與數論的深入聯繫。.

新!!: 表示论和自守形式 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

新!!: 表示论和酉矩阵 · 查看更多 »

離散群

在數學中,離散群是配備了離散拓撲的群 G。帶有這種拓撲 G 成為了拓撲群。拓撲群 G 的離散子群是其相對拓撲為離散拓撲的子群 H。例如,整數集 Z 形成了實數集 R 的離散子群,但是有理數集 Q 不行。 任何群都可以給予離散拓撲。因為出自離散空間的所有映射都是連續的,離散群的拓撲同態完全就是底層群的群同態。因此,在群范疇和離散群范疇之間有一個同構,離散群因此同一於它們的底層(非拓撲)群。由于這個想法,術語離散群論被用來稱呼對沒有拓撲結構的群的研究,用來對比於拓撲群論或李群論。它在邏輯上和技術上被分為有限群論和無限群論。 在有些場合拓撲群或李群反自然的配備上離散拓撲是有用的。這可以在玻爾緊緻化理論和在李群的群上同調理論中找到實例。.

新!!: 表示论和離散群 · 查看更多 »

零空间

在数学中,一个算子 A 的零空间是方程 Av.

新!!: 表示论和零空间 · 查看更多 »

集合 (数学)

集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

新!!: 表示论和集合 (数学) · 查看更多 »

集合范畴

在範疇論這個數學領域中,集合範疇(標記為 Set)是一個對象為集合的範疇。集合 A 及 B 之間的態射族包含所有從 A 映射至 B 的函數。 集合範疇是許多其他範疇(如其態射為群同態的群範疇)的基礎,這些範疇均是在集合範疇的對象上附加其他結構,並限制其態射為特定函數而成。.

新!!: 表示论和集合范畴 · 查看更多 »

雅可比恒等式

雅可比恒等式就是下列等式:.

新!!: 表示论和雅可比恒等式 · 查看更多 »

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

新!!: 表示论和Lp空间 · 查看更多 »

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

新!!: 表示论和P進數 · 查看更多 »

SL₂(ℝ)

在数学中,特殊线性群  是行列式为  的  实矩阵组成的群: a & b \\ c & d \end: a,b,c,d\in\mathbb\right.\,,且 ad-bc.

新!!: 表示论和SL₂(ℝ) · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 表示论和抽象代数 · 查看更多 »

抽象调和分析

#重定向 傅里叶分析#抽象调和分析.

新!!: 表示论和抽象调和分析 · 查看更多 »

投影

在线性代数和泛函分析中,投影是从向量空间映射到自身的一种线性变换,是日常生活中“平行投影”概念的形式化和一般化。同现实中阳光将事物投影到地面上一样,投影变换将整个向量空间映射到它的其中一个子空间,并且在这个子空间中是恒等变换。.

新!!: 表示论和投影 · 查看更多 »

柏原正樹

柏原正樹(1947年1月30日,茨城縣結城市~)是一位日本數學家。曾任國際數學聯盟副主席柏原是佐藤幹夫在東京大學任教時的學生(但博士學籍在京都大學)。佐藤與柏原一同創立了代數解析及D-模理論。.

新!!: 表示论和柏原正樹 · 查看更多 »

极大紧子群

数学中,一个拓扑群 G 的极大紧子群 K 是一个在子空间拓扑下是紧空间的子群,且是这些子群中的极大元。 一个一般李群不一定有极大紧子群,但半单李群却一定存在,而且他们在理论中有重要地位。极大紧子群一般不是惟一的,但在相差一个共轭的意义下是惟一的——他们是本质惟一的。.

新!!: 表示论和极大紧子群 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 表示论和李代數 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 表示论和李群 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

新!!: 表示论和模 · 查看更多 »

模形式

模形式是數學上一個滿足一些泛函方程與增長條件、在上半平面上的(複)解析函數。因此,模形式理論屬於数论的範疇。模形式也出現在其他領域,例如代數拓撲和弦理論。 模形式理論是更廣泛的自守形式理論的特例。自守形式理論的發展大致可分成三期:.

新!!: 表示论和模形式 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 表示论和欧几里得空间 · 查看更多 »

正交补

在数学领域线性代数和泛函分析中,内积空间 V 的子空间 W 的正交补 W^\bot 是正交于 W 中所有向量的所有 V 中向量的集合,也就是 正交补总是闭合在度量拓扑下。在希尔伯特空间中,W 的正交补的正交补是 W 的闭包,就是说 如果 A 是 m \times n 矩阵,而 \mbox A, A 和 \mbox A 分别指称行空间、列空间和零空间,则有 和.

新!!: 表示论和正交补 · 查看更多 »

泛包絡代數

在數學中,我們可以構造任意李代數 L 的泛包絡代數 U(L)。李代數一般並非結合代數,但泛包絡代數則是帶乘法單位元的結合代數。李代數的表示理論可以理解為其泛包絡代數的表示理論。在幾何上,泛包絡代數可以解釋為李群上的左不變微分算子。.

新!!: 表示论和泛包絡代數 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

新!!: 表示论和泛函分析 · 查看更多 »

朗蘭茲綱領

朗蘭茲綱領是數學中一系列影響深遠的構想,聯繫數論、代數幾何與约化群表示理論;綱領最初由羅伯特·朗蘭茲於1967年在一封給韦伊的中提出。.

新!!: 表示论和朗蘭茲綱領 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 表示论和有限域 · 查看更多 »

有限單群分類

有限單群的分類是代數學裡的一個巨大的工程。有關的文章大多發表於1955年至2004年,本条目英文版。之間,目的在於將所有的有限簡單群都給清楚地分類。這項工程總計約有100位作者在500篇期刊文章中寫下了上萬頁的文字。.

新!!: 表示论和有限單群分類 · 查看更多 »

戴维·芒福德

戴维·布赖恩特·芒福德(David Bryant Mumford,),又译大衛·曼福德,美國數學家。 在哈佛大學,他上奥斯卡·扎里斯基的課時,引起了對代數幾何學的興趣。芒福德曾研究模空間,出版了幾何不變量理論一書。現在任教於布朗大學,研究模式科学。 1974年獲費爾茲獎,2006年獲邵逸夫獎,2008年获得沃尔夫奖。 Category:美国数学家 Category:菲尔兹奖获得者 Category:沃尔夫数学奖得主 Category:哈佛大學校友 Category:邵逸夫奖得主 Category:美国国家科学奖获奖者 Category:布朗大學教師.

新!!: 表示论和戴维·芒福德 · 查看更多 »

测度

数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.

新!!: 表示论和测度 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 表示论和施普林格科学+商业媒体 · 查看更多 »

无限群

在群论中,无限群 是潜在集合含有无穷多个元素的群。.

新!!: 表示论和无限群 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 表示论和数学 · 查看更多 »

数学年刊

数学年刊(Annals of Mathematics)是普林斯顿大学和普林斯顿高等研究院办的数学期刊。.

新!!: 表示论和数学年刊 · 查看更多 »

数学分析

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.

新!!: 表示论和数学分析 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 表示论和数论 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 表示论和整数 · 查看更多 »

扎里斯基拓扑

在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

新!!: 表示论和扎里斯基拓扑 · 查看更多 »

拓撲空間範疇

在數學裡,拓撲空間範疇(通常標記為Top)是一個範疇,其物件為拓撲空間,態射為連續函數。拓撲空間範疇符合範疇的公理,因為兩個連續函數的複合函數依然是連續的。研究拓撲空間範疇及運用範疇論的技術來研究拓撲空間的性質之類的學科稱為「範疇拓撲學(categorical topology)」。 注意,有些作者會將Top這個標記用來指物件為拓撲流形,態射為連續函數的範疇。.

新!!: 表示论和拓撲空間範疇 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

新!!: 表示论和拓扑学 · 查看更多 »

拓扑群

在數學中,拓撲群是群 G 和與之一起的 G 上的拓撲,使得這個群的二元運算和這個群的取逆函數是連續的。拓撲群允許依據連續群作用來研究連續對稱的概念。.

新!!: 表示论和拓扑群 · 查看更多 »

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

新!!: 表示论和态射 · 查看更多 »

晶体学

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。.

新!!: 表示论和晶体学 · 查看更多 »

重定向到这里:

线性表示表象理论

传出传入
嘿!我们在Facebook上吧! »