目录
可解群
在數學的歷史中,群論原本起源於對五次方程及更高次方程無一般的公式解之證明的找尋,最終随着伽羅瓦理论的提出而确立。可解群的概念產生於描述其根可以只用根式(平方根、立方根等等及其和與積)表示的多項式所对应的自同構群所擁有的性質。 一個群被稱為可解的,若它擁有一個其商群皆為阿貝爾群的正規列。或者等價地說,若其降正規列 之中,每一個子群都會是前一個的导群,且最後一個為G的當然子群。上述兩個定義是等價的,对一個群H及H的正規子群N,其商群H/N為可交換的若且唯若N包含著H(1)。 對於有限群,有一個等價的定義為:一可解群為一有著其商群皆為質數階的循環群之合成列的群。此一定義會等價是因為每一個簡單阿貝爾群都是有質數階的循環群。若爾當-赫爾德定理表示若一個合成列有此性質,則其循環群即會對應到某個體上的n個根。但此一定義的等價性並不必然於無限群中亦會成立:例如,因為每一個在加法下的整數群Z的非當然子群皆同構於Z本身,它不會有合成列,但是其有著唯一同構於Z的商群之正規列,證明了其確實是可解的。 和喬治·波里亞的格言「若有一個你無法算出的問題,則會有的你可以算出的較簡單的問題」相一致的,可解群通常在簡化有關一複雜的群的推測至一系列有著簡單結構-阿貝爾群的群的推測有著很有用的功用。.
复合函数
在数学领域,两个函数的复合函数指一个将第一个函数作用于参数,然后再将第二个函数作用于所得结果的函数。 具体来说,给定两个函数f: X → Y和g: Y → Z,其中f的陪域等于g的定义域(称为f、g可复合),则其复合函数h.
交错群
数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 n 阶交错群,或 n 个字母上的交错群,记做 An 或 Alt(n)。 例如,4 阶交错群是 A4.
共轭类
数学上,特别是在群论中,群的元素可以分割成共轭类(Conjugacy class);同一个共轭类的元素有很多共同的属性,而且研究非交换群的共轭类可以看出很多关于它们的结构的重要特征。对于交换群,这个概念是平凡的,因为每个类就是一个单元素集合。 在同一个共轭类上取常值的函数称为类函数。.
置换群
数学上,一个置换群是一个群 G ,其元素是一个给定集 M 的置换,而其群作用是 G 中的置换(可以看作是从M到自身的双射)的复合;其关系经常写作 (G,M) 。注意所有置换的群是对称群;置换群通常是指对称群的一个子群。 n 个元素的置换群记为 S_n ;若 M 是任意有限或无限集合,则所有 M 的置换组成的对称群通常写作 \text(M) 。 置换群到被置换的元素的应用称为群作用;它在对称性和组合论以及数学的其他很多分支中有应用。.
置換
排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.
群同態
在數學中,給定兩個群(G, *)和(H,·),從 (G, *)到 (H,·)的群同態是函數h: G → H使得對於所有G中的u和v下述等式成立 在這裡,等號左側的群運算*,是G中的運算;而右側的運算·是H中的運算。 從這個性質,可推導出h將G的單位元eG映射到H的單位元eH,并且它還在h(u-1).
群作用
数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。.
階乘
一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.
軌道
軌道可以指:.
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
核
核可以指:.
正规子群
在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.
另见
對稱
- CPT對稱
- 三曲腿图
- 三聯畫
- 不可约表示
- 中心对称图形
- 二阶导数的对称性
- 交換律
- 共形場論
- 分子对称性
- 勞侖茲協變性
- 反演
- 圓對稱
- 守恒定律
- 密鋪
- 对称 (数学)
- 对称性 (物理学)
- 对称性破缺
- 对称群 (n次对称群)
- 對稱
- 希格斯場
- 希格斯机制
- 幾何變換
- 德罗斯特效应
- 愛因斯坦群
- 手徵性
- 旋转对称
- 明顯對稱性破缺
- 時間反演對稱
- 晶体学点群
- 晶体对称要素
- 晶系
- 李群
- 李群胚
- 楊-米爾斯理論
- 爱尔兰根纲领
- 空間對稱群
- 空间群
- 等变映射
- 等距同构
- 纖維流形
- 群
- 群作用
- 自发对称破缺
- 自同构
- 诺特定理
- 超對稱破缺
- 連續對稱
- 電荷共軛對稱
- 龐加萊群