我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

对称 (数学)

指数 对称 (数学)

对称不只出現在幾何學中,也在數學領域的其他分支中出現,对称其實就是不變量,是指某特性不隨而變化。 若一個物件可以藉由另一個物件的不變轉換來得到,二個物件藉由不變轉換有互相对称關係,這是一種等价关系。 在中,函數的輸出值不隨輸入變數的排列而改變,這些排列形成一個群,也就是對稱群。在欧几里得几何中的等距同构中,也有使用「對稱群」一詞,更廣泛的用法是自同构群。.

目录

  1. 38 关系: 域 (數學)反对称关系反對稱矩陣反交換律同餘对称差对称关系對稱對稱矩陣不變量常微分方程布尔值函数平移并集交集交換律二元关系二阶导数的对称性伽羅瓦理論微分方程几何学等于等价关系等距同构群作用特征 (代数)點群运算自同构镜面反射離散型均勻分佈連續型均勻分布样本空间概率分布概率论欧几里得几何旋转

  2. 對稱

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

查看 对称 (数学)和域 (數學)

反对称关系

数学上,若对所有的 a 和 b 属于 X,下述語句保持有效,則集合 X 上的二元关系 R 是反对称的:「若 a 关系到 b 且 b 关系到 a,则 a.

查看 对称 (数学)和反对称关系

反對稱矩陣

在線性代數中,反對稱矩陣(或稱斜對稱矩陣)是一個方形矩陣,其轉置矩陣和自身的加法逆元相等。其滿足: 或寫作A.

查看 对称 (数学)和反對稱矩陣

反交換律

令 S 是一个加法群, “*” 是定义在 S 上的二元运算。 如果“*”满足以下条件: 对于任意的 s_1, s_2\in S,有s_1*s_2.

查看 对称 (数学)和反交換律

同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

查看 对称 (数学)和同餘

对称差

数学上,两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。 集合论中的这个运算相当于布尔逻辑中的异或运算。 集合A和B的对称差通常表示为A\triangle B,对称差的符号在有些图论书籍中也使用\oplus符号来表示。例如:集合\和\的对称差为\。所有学生的集合和所有女性的集合的对称差为所有男性学生和所有女性学生组成的集合。.

查看 对称 (数学)和对称差

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

查看 对称 (数学)和对称关系

對稱

對稱是幾何形狀、系統、方程以及其他實際上或概念上之客體的一種特徵-典型地,物件的一半為其另一半的鏡射。 在數理上,如果稱一個幾何圖形或物體為對稱的話,即表示它是變形的不變量,而對稱一詞亦包含在此定義之中。若兩個物體稱為互相對稱時,即表示其中一者的形狀經幾何分割後,在不變更整體形狀的情況下,可以將分割片段重組為另一者,且反之亦然。 對稱亦可在人類與其他動物等生物體中發現(見如下之生物內的對稱)。在二維幾何中,較有趣味的幾種主要的對稱為相對於基本之歐幾里得空間等距的:平移、旋轉、鏡射及滑移鏡射。.

查看 对称 (数学)和對稱

對稱矩陣

在線性代數中,對稱矩陣是一個方形矩陣,其轉置矩陣和自身相等。 對稱矩陣中的右上至左下方向元素以主對角線(左上至右下)為軸進行對稱。若將其寫作A.

查看 对称 (数学)和對稱矩陣

不變量

假若,在某種變換下,一個系統的某物理量保持不變,則稱此物理量為不變量(invariant)。例如,在伽利略變換下,時間是個不變量;在勞侖茲變換下,光速、靜質量、電荷量等等,都是不變量。這類變換表達出不同觀察者的參考系之間的關係。例如,在火車站台的查票員的參考系,與在移動中的火車內的乘客的參考系,這兩個參考系之間的關係。 假若,在某種變換下,一個系統的某物理性質保持不變,則稱此物理性質為不變性(invariance)。例如,在內積空間內,對於任意旋轉,向量的內積保持不變,稱此性質為旋轉不變性。 根據諾特定理,對於一種變換,每一種不變性代表一條基本的守恆定律。例如,對於平移變換的不變性導致動量守恆定律,對於的不變性導致能量守恆定律。 在現代理論物理裏,不變性是很重要的概念。許多理論是由對稱性與不變性表達。 在張量數學裏,協變性與反變性是不變性的數學性質的推廣。在電磁學和相對論裏,時常會應用到這些概念。.

查看 对称 (数学)和不變量

常微分方程

在数学分析中,常微分方程(ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。 很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s 和时间 t 的关系就可以表示为如下常微分方程: 其中 m 是物体的质量,f(s) 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s,它只以时间 t 为自变量。.

查看 对称 (数学)和常微分方程

布尔值函数

布尔值函数是 f: X \to \mathbb 类型的函数,这里的 X 是一个任意集合,而 \mathbb 是一般性的 2 元素集合,典型的是 \mathbb.

查看 对称 (数学)和布尔值函数

平移

在仿射幾何,平移(translation)是將物件的每點向同一方向移動相同距離。 它是等距同構,是仿射空間中仿射變換的一種。它可以視為將同一個向量加到每點上,或將坐標系統的中心移動所得的結果。即是說,若\mathbf是一個已知的向量,\mathbf是空間中一點,平移T_(\mathbf).

查看 对称 (数学)和平移

并集

在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.

查看 对称 (数学)和并集

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 对称 (数学)和交集

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

查看 对称 (数学)和交換律

二元关系

数学上,二元关系(Binary relation,或简称关系)用於讨论两种物件的连系。诸如算术中的「大於」及「等於」、几何学中的「相似」或集合论中的「为……之元素」、「为……之子集」。.

查看 对称 (数学)和二元关系

二阶导数的对称性

数学中,二阶导数的对称性(也称为混合导数的相等)指取一个n元函数 的偏导数可以交换。如果关于x_的偏导数用一个下标i表示,则对称性断言二阶偏导数f_满足等式 从而它们组成一个n×n 对称矩阵。有时这也称为杨定理(Young's theorem)。.

查看 对称 (数学)和二阶导数的对称性

伽羅瓦理論

在数学中,特别是抽象代数理论中,由法國數學家埃瓦里斯特·伽罗瓦(Évariste Galois)得名的伽罗瓦理论提供了域论和群论之间的联系。应用伽罗瓦理论,域论中的一些问题可以化简为更简单易懂的群论问题。 伽罗瓦最初使用置换群来描述给定的多项式的根与根之间的关系。由戴德金(Julius Wilhelm Richard Dedekind)、利奥波德·克罗内克(Leopold Kronecker)、埃米爾·阿廷(Emil Artin)等人发展起来的现代伽罗瓦理论引入了关于域扩张及其自同构的研究。 伽罗瓦理论的进一步抽象为伽罗瓦连接理论。.

查看 对称 (数学)和伽羅瓦理論

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

查看 对称 (数学)和微分方程

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 对称 (数学)和几何学

等于

数学上,两个数学对象是相等的,若他们在各个方面都相同。这就定义了一个二元谓词等于,写作“.

查看 对称 (数学)和等于

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

查看 对称 (数学)和等价关系

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

查看 对称 (数学)和等距同构

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

查看 对称 (数学)和群

群作用

数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。.

查看 对称 (数学)和群作用

特征 (代数)

在数学中,环R的特征被定义为最小的正整数n使得 这里的na被定义为 如果不存在这样的n,R的特征被定义为0。R的特征经常指示为char(R)。 环R的特征可以等价的定义为唯一的自然数n使得nZ是映射1到1R的从Z到R的唯一的环同态的核。另一个等价的定义:R的特征是唯一的自然数n使得R包含同构于商环Z/nZ的子环。.

查看 对称 (数学)和特征 (代数)

點群

在數學裡,點群是指固定一點不動之幾何對稱(等距同構)的群。.

查看 对称 (数学)和點群

运算

数学上,运算(Operation)是一种行为,通过已知量的可能的组合,获得新的量。例如,算术中的加法6+3.

查看 对称 (数学)和运算

自同构

數學上,自同構是從一個到自身的同構,可以看為這對象的一個對稱,將這對象映射到自身而保持其全部結構的一個途徑。一個對象的所有自同構的集合是一個群,稱為自同構群,大致而言,是這對象的對稱群。.

查看 对称 (数学)和自同构

镜面反射

面反射可以指:.

查看 对称 (数学)和镜面反射

離散型均勻分佈

在統計學及概率理論中,離散型均匀分佈是一個離散型概率分佈,其中有限個數值擁有相同的概率。 Category:离散分布 Category:概率分布.

查看 对称 (数学)和離散型均勻分佈

連續型均勻分布

連續型均匀分布,如果连续型随机变量\mathit具有如下的概率密度函数,则称\mathit服从上的均匀分布(uniform distribution),记作X \sim U.

查看 对称 (数学)和連續型均勻分布

样本空间

概率论中,样本空间是一个实验或随机试验所有可能结果的集合,而随机试验中的每个可能结果稱為样本点。通常用S、\Omega或U表示。例如,如果抛掷一枚硬币,那么样本空间就是集合。如果投掷一个骰子,那么样本空间就是\。 有些实验有兩个或多个可能的样本空间。例如,从没有鬼牌的52张扑克牌中随机抽出一张,一个可能的样本空间是数字(A到K)(包括13个元素),另外一个可能的样本空间是花色(黑桃,红桃,梅花,方块)(包括4个元素)。如果要完整地描述一张牌,就需要同时给出数字和花色,这时的样本空间可以通过构建上述两个样本空间的笛卡儿乘积来得到。 在初等概率中,样本空间的任何一个子集都被称为一个事件。如果一个子集只有一个元素,那这个子集被称为基本事件。但當樣本空間大小是無限的時候,這個定義就不可行,因此要給出一個更準確的定義。只有可測子集才稱為事件,這些可測子集且要構成樣本空間上的σ-代数。然而這樣定義的重要性只是從理論上而言的,因為σ-代数在實際應用上可以定義為所有集的集合。 样本空间里可以进行加法运算,可以进行数乘(除)运算。 可以求平均值。.

查看 对称 (数学)和样本空间

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

查看 对称 (数学)和概率分布

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

查看 对称 (数学)和概率论

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

查看 对称 (数学)和欧几里得几何

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

查看 对称 (数学)和旋转

另见

對稱