我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

运算

指数 运算

数学上,运算(Operation)是一种行为,通过已知量的可能的组合,获得新的量。例如,算术中的加法6+3.

目录

  1. 23 关系: 加法对数三角函数并集乘法交集交換律二元运算初等代數函数笛卡儿积算子绝对值结合律补集集合集合论逻辑非除法抽象代数減法数学

  2. 初等数学
  3. 数字运算

加法

加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.

查看 运算和加法

对数

在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数  的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.

查看 运算和对数

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

查看 运算和三角函数

并集

在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.

查看 运算和并集

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

查看 运算和乘法

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 运算和交集

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

查看 运算和交換律

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

查看 运算和二元运算

初等代數

初等代數是一個初等且相對簡單形式的代數,教導對象為還沒有數學算術方面正規知識的學生們。當在算術中只有數字和其運算(如:加、減、乘、除)出現時,在代數中也會使用符號(如:x、y或a、b)來表示數字,這些符號稱做變數。這是很有用的,因為:.

查看 运算和初等代數

幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.

查看 运算和冪

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 运算和函数

笛卡儿积

在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

查看 运算和笛卡儿积

算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

查看 运算和算子

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

查看 运算和绝对值

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

查看 运算和结合律

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 运算和补集

集合

集合可以指:.

查看 运算和集合

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

查看 运算和集合论

逻辑非

逻辑非是布尔代数中一种一元运算。它的运算结果是将运算元的真值--。 命题A的非可以有几种写法:.

查看 运算和逻辑非

除法

数学中,尤其是在基本计算裏,除法可以看成是「乘法的反运算」,也可以理解为「重复的减法」。除法运算的本质就是「把参与运算的除数变为1,得出被除数的值」。 例如:6 \div 3.

查看 运算和除法

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

查看 运算和抽象代数

減法

減法是尋找兩個數的差的算术運算,可視為「加法的逆運算」。減法是符號是減號(-)。加、減、乘、除合稱四則運算。 在數式5 - 3.

查看 运算和減法

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 运算和数学

另见

初等数学

数字运算

亦称为 一元算子。