目录
32 关系: 同餘,多項式,小数点,工程学,带余除法,乘法,乘法表,余数,分數,函数,商數,关系,因式分解,因數,短除法,科学,算盘,算术,编程语言,高等数学,自然数,長除法,英语,零,除以零,比例,減法,最大公因數,最小公倍數,数学,整数,整数分解。
- 四则运算
同餘
数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.
查看 除法和同餘
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 除法和多項式
小数点
#重定向 小數點.
查看 除法和小数点
工程学
工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.
查看 除法和工程学
带余除法
带余除法(也称为欧几里德除法)是数学中的一种基本算术计算方式。给定一个被除数和一个除数,带余除法给出一个整数和一个介于一定范围的余数,使得下面等式成立: 一般限定余数的范围在0与之间,也有限定在与之间。这样的限定都是为了使得满足等式的有且仅有一个。这时候的称为带余除法的商。带余除法一般表示为: 表达为:“除以等于,余”。最常见的带余除法是整数与整数的带余除法(被除数和除数都是整数),但实数与整数乃至实数与实数的带余除法也有应用。对一般的抽象代数系统,能够进行带余除法的都是具有欧几里德性质的系统。如果余数为零,则称整除。一般约定除数不能为0.
查看 除法和带余除法
乘法
乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.
查看 除法和乘法
乘法表
乘法表,是在数学中用于定义一个数系中的乘法运算。.
查看 除法和乘法表
余数
在算术中,当两个整数相除的结果不能以整数商表示时,余数便是其“餘留下的量”。当余数为零时,被称为整除。.
查看 除法和余数
分數
分數(fraction)是用分式(分數式)表達成 \frac 的数(a, b \in Z, b\neq 0)。在上式之中,b 稱為分母(Denominator)而 a 稱為分子(Numerator),可視為某件事物平均分成 b 份中佔 a 分,讀作「b 分之 a」。中間的線稱為分線或分数线。有時人們會用 a/b 來表示分數。.
查看 除法和分數
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 除法和函数
商數
商數是指除法運算的結果,通常是说它的整数部分。例如: (13 \div 3.
查看 除法和商數
关系
关系的基本含义为事物之间相互作用、相互影响的状态,特定环境下可以指:.
查看 除法和关系
因式分解
因式分解(factorization,factorisation,或factoring),在數學中一般理解為把一個多項式分解為兩個或多個的因式(因式亦為多項式)的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如多項式x^2 -4可被因式分解為\left(x+2 \right) \left(x-2 \right)。.
查看 除法和因式分解
因數
因數是一個常見的數學名詞,又名「--」。.
查看 除法和因數
短除法
短除法是算术中除法的演算法,將除法轉換成一連串的運算。短除法是由長除法簡化而來,當中會用到心算,因此除數較小的除法比較適用短除法。對大部份的人而言,若除以12或12以下的數,可以用記憶中乘法表的內容,用心算來進行短除法。也有些人可以處理除數更大的短除法。 在短除法中,要將一個數(稱為被除數)除以除數,所得的結果稱為商數。利用短除法,可以求解被除數很大,除數很小的除法,將其轉換為一連串較簡單的運算。 短除法也常用在因式分解,或是最大公因數的計算。.
查看 除法和短除法
科学
科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.
查看 除法和科学
算盘
算盘,是算數的工具,以排列成串的算珠作為計算工具,矩形木框内排列一串串等数目的算珠稱為檔。用算盘计算称珠算,珠算有对应四则运算的相应法则,统称珠算法则。相对一般运算来看,熟练的珠算不逊于電子計算器,尤其在加减法方面。根据珠算演变而来的珠算式心算成了速算技术的一种。 ,亚太日报,2013年12月5日.
查看 除法和算盘
算术
算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.
查看 除法和算术
编程语言
编程语言(programming language),是用来定义计算机程序的形式語言。它是一种被标准化的交流技巧,用来向计算机发出指令。一种计算机语言让程序员能够准确地定义计算机所需要使用的数据,并精确地定义在不同情况下所应当采取的行动。 最早的编程语言是在電腦發明之前產生的,當時是用來控制及自動演奏鋼琴的動作。在電腦領域已發明了上千不同的编程語言,而且每年仍有新的编程語言誕生。很多编程語言需要用指令方式說明計算的程序,而有些编程語言則屬於宣告式編程,說明需要的結果,而不說明如何計算。 编程语言的描述一般可以分為及語義。語法是說明編程語言中,哪些符號或文字的組合方式是正確的,語義則是對於編程的解釋。有些語言是用規格文件定義,例如C語言的規格文件也是ISO標準中一部份,2011年後的版本為ISO/IEC 9899:2011,而其他55語言(像Perl)有一份主要的文件,視為是。.
查看 除法和编程语言
高等数学
等数学是比初等数学更高深的数学。有将中学里较深入的代数、几何以及集合论初步、逻辑初步统称为中等数学的,将其作为小学、初中的初等数学与本科阶段的高等数学之间的过渡。通常认为,高等数学的主要内容包括:极限理论、一元微积分学、多元微积分学、空间解析几何与向量代数、级数理论、常微分方程初步。在高等数学的教材中,以微积分学和级数理论为主体,其他方面的内容为辅,各类课本略有差异。 在中華人民共和國,理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的深一些,课本常称“高等数学”,多数院校使用课本为同济大学数学系所编的《高等数学》;文史科各类专业的学生,学的浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。 高等数学是高等学校理工科本科有关专业学生的一门必修的重要基础课。通过这门课程的学习,使学生获得向量代数与空间解析几何、微积分的基本知识,必要的基础理论和常用的运算方法,并注意培养学生的运算能力和初步的抽象思维、逻辑推理及空间想象能力,从而使学生获得解决实际问题能力的初步训练,为学习后继课程奠定必要的数学基础。.
查看 除法和高等数学
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 除法和自然数
長除法
長除法也稱為直式除法,是算术中除法的演算法,可以處理多位數的除法,而且很簡單,可以用紙筆計算。長除法將除法分為許多由減法及乘法組合的步驟。長除法中,被除數會除以除數,得到一個數字,稱為商數。長除法將除法分為許多簡單的步驟,因此可以處理任意長度數字的除法。長除法可以處理整數除法、小數除法、多项式除法,也可以處理有餘數的歐幾里德除法。 長除法的簡化版稱為短除法,若除數只有一位數時,會用短除法代替長除法。也是一種處理長除法的作法,比較沒有效率,但比較容易理解。 類似長除法的演算法在西元十二世紀就出現了,不過此種演算法的現代型式是在西元1600年由引進。.
查看 除法和長除法
英语
英语(English,)是一种西日耳曼语言,诞生于中世纪早期的英格兰,如今具有全球通用语的地位。“英语”一词源于迁居英格兰的日耳曼部落盎格鲁(Angles),而“盎格鲁”得名于临波罗的海的半岛盎格里亚(Anglia)。弗里西语是与英语最相近的语言。英语词汇在中世纪早期受到了其他日耳曼族语言的大量影响,后来受罗曼族语言尤其是法语的影响。英语是将近六十个国家唯一的官方语言或官方语言之一,也是全世界最多國家的官方語言。它是英国、美国、加拿大、澳大利亚、爱尔兰和新西兰最常用的语言,也在加勒比、非洲及南亚的部分地区被广泛使用。它是世界上母语人口第三多的语言,仅次于汉语和西班牙语。英语是学习者最多的第二外语跟學習者最多的第一外語,是联合国、欧盟和许多其他国际组织的官方语言。它是使用最广泛的日耳曼族语言,至少70%的日耳曼语族使用者说英语。 英语有1400多年的发展史。公元5世纪,盎格魯-撒克遜人把他们的各种盎格鲁-弗里西语方言带到了大不列顛島,它们被称为古英语。中古英语始于11世纪后期的诺曼征服,这一时期英语受到了法语的影响。15世纪末伦敦对印刷机的采用、《钦定版圣经》的出版及元音大推移标志了近代英语的开端。通过大英帝国对全球的影响,现代英语在17世纪至20世纪中叶传播到了世界各地。通过各种印刷和电子媒体,随着美国取得全球超级大国地位,英语已经成为了国际对话中居领导地位的世界語言。它还是许多地区和行业(如科学、导航、法律等)的通用语。 现代英语和很多其他语言相比屈折变化较少,更多地依靠助動詞和语序来表达复杂的时态、体和语气,以及被動語態、疑问和一些否定。英语的各种口音和方言在发音和音位方面有显著差异,有时它们的词汇、语法和拼法也有所不同,但世界各地说英语的人能基本无碍地沟通交流。.
查看 除法和英语
零
零可以指:.
查看 除法和零
除以零
在數學中,被除數的除數(分母)是零將某數除以零,可表達為\frac,a是被除數。在算式中沒有意義,因為沒有數目,以零相乘(假設a\neq 0),由於任何數字乘以零均等於零,因此除以零是一個沒有定義的值。此式是否成立端視其在如何的數學設定下計算。一般實數算術中,此式為無意義。在程序設計中,當遇上正整數除以零程序會中止,正如浮點數會出現NaN值的情況,而在Microsoft Excel及Openoffice或Libreoffice的Calc中,除以零會直接顯示#DIV/0! 。.
查看 除法和除以零
比例
在数学中,比例是兩個非零數量y與x之間的比較關係,記為y:x \; (x, y \in \mathbb),在計算時則更常寫為\frac或y/x。若两个變量的关系符合其中一个量是另一个量乘以一个常数(y.
查看 除法和比例
減法
減法是尋找兩個數的差的算术運算,可視為「加法的逆運算」。減法是符號是減號(-)。加、減、乘、除合稱四則運算。 在數式5 - 3.
查看 除法和減法
最大公因數
数学中,兩個或多個整數的最大公因數(greatest common factor,hcf)指能够整除这些整数的最大正整数(这些整数不能都为零)。例如8和12的最大公因数为4。最大公因数也称最大公约数(greatest common divisor,gcd)。 整数序列a的最大公因数可以記為(a_1, a_2, \dots, a_n)或\gcd(a_1, a_2, \dots, a_n)。 求兩個整數最大公因數主要的方法:.
查看 除法和最大公因數
最小公倍數
最小公倍數是数论中的一个概念。若有一個數X,可以被另外兩個數A、B整除,且X大於(或等于)A和B,則X為A和B的公倍數。A和B的公倍數有無限個,而所有的公倍數中,最小的公倍數就叫做最小公倍數。兩個整數公有的倍數称为它们的公倍数,其中最小的一個正整数称为它们两个的最小公倍数。同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数。n整数a_1, a_2, \cdots, a_n的最小公倍数一般记作:,或者参照英文记法记作\operatorname(a_1, a_2, \cdots, a_n),其中lcm是英语中“最小公倍数”一词(lowest common multiple)的首字母缩写。 对分數进行加減运算時,要求兩數的分母相同才能計算,故需要--;标准的计算步骤是将兩個分數的分母--成它们的最小公倍數,然后将--后的分子相加。.
查看 除法和最小公倍數
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 除法和数学
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
查看 除法和整数
整数分解
在數學中,整數分解(integer factorization)又稱質因數分解(prime factorization),是將一個正整數寫成幾個因數的乘積。例如,給出45這個數,它可以分解成32 ×5。根據算術基本定理,這樣的分解結果應該是獨一無二的。這個問題在代數學、密碼學、計算複雜性理論和量子計算機等領域中有重要意義。.
查看 除法和整数分解
另见
四则运算
- 0
- 0的奇偶性
- 乘法
- 二进制
- 加号与减号
- 加法
- 十进制
- 單位分數
- 四则运算
- 四次方數
- 奇偶性 (数学)
- 平方
- 平方数
- 循环小数
- 最小公倍數
- 最小公分母
- 最简分数
- 正負號
- 減法
- 百分比
- 相等
- 立方數
- 计算
- 负数
- 进位
- 除法
亦称为 整除性,除。