徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

同餘

指数 同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

68 关系: 博弈论十二平均律卡爾·弗里德里希·高斯卡邁克爾函數同餘關係合同 (數學)子集密码学對稱密鑰加密丟番圖方程带余除法中国剩余定理并集二次互反律互質当且仅当余数德国化學國際資料加密演算法元素 (數學)克罗内克符号勒让德符号因數国际银行账户号码倍數CAS号社会科学符号等价关系等价类算术基本定理紐結理論素数经济群论音乐視覺藝術計算機代數系統高级加密标准计算机科学輾轉相除法迪菲-赫尔曼密钥交换自然数集合 (数学)集合划分雅可比符号除法RSA加密演算法...校验和概念模除標識符欧拉函数歐拉定理法律有限域最大公因數最小公倍數星期的計算数学数学家数论数据结构整除规则整数整数分解 扩展索引 (18 更多) »

博弈论

賽局理論(game theory),又譯為对策论,或者--,经济学的一个分支,1944年馮·諾伊曼與奧斯卡·摩根斯特恩合著《博弈論與經濟行為》,標誌著現代系統博弈理論的的初步形成,因此他被稱為「博弈論之父」。博弈論被認為是20世紀經濟學最偉大的成果之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是運籌學的一个重要学科。.

新!!: 同餘和博弈论 · 查看更多 »

十二平均律

十二平均律,又稱十二等程律,是一種音樂的定律方法,將一個八度平均分成十二等份,每等分稱為半音,是最主要的調音法。音高八度音指的是頻率加倍(即二倍頻率)。八度音的頻率分為十二等分,即是分為十二個等比級數,也就是每個音的頻率為前一個音的2的12次方根:.

新!!: 同餘和十二平均律 · 查看更多 »

卡爾·弗里德里希·高斯

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.

新!!: 同餘和卡爾·弗里德里希·高斯 · 查看更多 »

卡邁克爾函數

卡邁克爾函数\lambda(n)满足a^\equiv 1\pmod,其中a与n互质。.

新!!: 同餘和卡邁克爾函數 · 查看更多 »

同餘關係

在数学特别是抽象代数中,同餘关系或简称同餘是相容于某个代数运算的等价关系。.

新!!: 同餘和同餘關係 · 查看更多 »

合同 (數學)

在數學中,合同(英文:congruence,符號:≅)做為一個一般性的概念,指的是一組物件之間的等價關係。例如:.

新!!: 同餘和合同 (數學) · 查看更多 »

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

新!!: 同餘和子集 · 查看更多 »

密码学

密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.

新!!: 同餘和密码学 · 查看更多 »

對稱密鑰加密

對稱密鑰加密(Symmetric-key algorithm)又稱為對稱加密、私鑰加密、共享密鑰加密,是密碼學中的一類加密演算法。這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單地相互推算的密鑰。事实上,這組密鑰成為在兩個或多個成員間的共同祕密,以便維持專屬的通訊聯繫。與公开密钥加密相比,要求雙方取得相同的密鑰是對稱密鑰加密的主要缺點之一。 常见的对称加密算法有DES、3DES、AES、Blowfish、IDEA、RC5、RC6。 对称加密的速度比公钥加密快很多,在很多场合都需要对称加密。.

新!!: 同餘和對稱密鑰加密 · 查看更多 »

丟番圖方程

丟番圖方程,是未知数只能使用整數的整數係數多項式等式;即形式如a_1 x_1^+a_2 x_2^+......+a_n x_n^.

新!!: 同餘和丟番圖方程 · 查看更多 »

带余除法

带余除法(也称为欧几里德除法)是数学中的一种基本算术计算方式。给定一个被除数和一个除数,带余除法给出一个整数和一个介于一定范围的余数,使得下面等式成立: 一般限定余数的范围在0与之间,也有限定在与之间。这样的限定都是为了使得满足等式的有且仅有一个。这时候的称为带余除法的商。带余除法一般表示为: 表达为:“除以等于,余”。最常见的带余除法是整数与整数的带余除法(被除数和除数都是整数),但实数与整数乃至实数与实数的带余除法也有应用。对一般的抽象代数系统,能够进行带余除法的都是具有欧几里德性质的系统。如果余数为零,则称整除。一般约定除数不能为0.

新!!: 同餘和带余除法 · 查看更多 »

中国剩余定理

中國剩--定理,又稱中國餘數定理,是数论中的一個关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则以及求解方法。也称为孫子定理,古有「韓信點兵」、「孫子定理」、「求一术」(宋沈括)、「鬼谷算」(宋周密)、「隔墻算」(宋 周密)、「剪管術」(宋杨辉)、「秦王暗點兵」、「物不知數」之名。.

新!!: 同餘和中国剩余定理 · 查看更多 »

并集

在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.

新!!: 同餘和并集 · 查看更多 »

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.

新!!: 同餘和二次互反律 · 查看更多 »

互質

互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.

新!!: 同餘和互質 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 同餘和当且仅当 · 查看更多 »

余数

在算术中,当两个整数相除的结果不能以整数商表示时,余数便是其“餘留下的量”。当余数为零时,被称为整除。.

新!!: 同餘和余数 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 同餘和德国 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 同餘和化學 · 查看更多 »

國際資料加密演算法

國際資料加密演算法(International Data Encryption Algorithm,縮寫為 IDEA),最早稱為改良建議加密標準(Improved Proposed Encryption Standard,IPES),是密碼學上一種對稱密鑰分組密碼,由James Massey與來學嘉設計,在1991年首次提出。這個演算法的提出,是爲了取代舊有的資料加密標準(DES)。 在PGP加密程序中,國際資料加密演算法取代了v1.0中不安全的BassOmatic演算法,為v2.0加密及驗證之用,并作爲OpenPGP的一個可選演算法。.

新!!: 同餘和國際資料加密演算法 · 查看更多 »

元素 (數學)

在数学领域,集合的元素(element)指构成该集合的任意,也可以称作成员(member)。.

新!!: 同餘和元素 (數學) · 查看更多 »

克罗内克符号

数论中,克罗内克符号写作\left(\frac an\right)或(a|n),是雅克比符号对全体整数n的推广。首先被利奥波德·克罗内克提出。.

新!!: 同餘和克罗内克符号 · 查看更多 »

≡可以指:.

新!!: 同餘和≡ · 查看更多 »

勒让德符号

勒让德符号,或二次特征,是一个由阿德里安-马里·勒让德在1798年尝试证明二次互反律时引入的函数。这个符号是许多高次剩余符号的原型;其它延伸和推广包括雅可比符号、克罗内克符号、希尔伯特符号,以及阿廷符号。.

新!!: 同餘和勒让德符号 · 查看更多 »

因數

因數是一個常見的數學名詞,又名「--」。.

新!!: 同餘和因數 · 查看更多 »

国际银行账户号码

國際銀行帳戶號碼(International Bank Account Number,简称IBAN)是各國各銀行之間互相定立的標識號碼,可降低國際間金融操作的失誤。它最初是由歐洲銀行標準委員會(ECBS)通過,後來被採納為國際標準 ISO 13616:1997。目前的標準是ISO 13616:2007,表明SWIFT代碼(ISO 9362)為正式的格式。最初開發是為了促進歐盟範圍內的支付,但現在也已經實施到大多數歐洲國家和其他國家,尤其是在中東和加勒比海地區。IBAN最多包含34個字母和數字字符:首兩個字母是ISO 3166-1α-2國家代碼,然後兩個校驗位,校驗位可檢查完整性。最後一個是特定國家的基本銀行帳戶號碼(BBAN)。BBAN格式的決定是由每個國家的銀行界的約束下,它必須是一個固定長度的不區分大小寫的英數字。它包括國內銀行账户號碼,銀行分行的號碼,和潛在的路由信息。.

新!!: 同餘和国际银行账户号码 · 查看更多 »

倍數

倍數是一數學名詞,是指一個數和一整數的乘積。換句話說,針對兩個數a和b,若存在一整數n使得b.

新!!: 同餘和倍數 · 查看更多 »

CAS号

CAS編號(CAS Registry Number,或称CAS Number,CAS Rn,CAS #),又称CAS登录号或CAS登記號碼,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。 美国化学会的下设组织化学文摘社(Chemical Abstracts Service,簡稱CAS)负责为每一种出现在文献中的物质分配一个CAS編號,其目的是为了避免化学物质有多种名称的麻烦,使数据库的检索更为方便。如今几乎所有的化学数据库都允许用CAS編號检索。.

新!!: 同餘和CAS号 · 查看更多 »

社会科学

会科学是用科学的方法,研究人类社会的種種现象。如社會學研究人類社會(主要是當代),政治學研究政治、政策和有關的活動,經濟學研究資源分配。广义的“社会科学”,是人文学科和社会科学的统称。 社會科學起源於西元1930年出版的《社會科學百科全書》(Encyclopaedia of the Social Sciences),其內容包含了社會學、人類學、經濟學、政治學、犯罪學、生物學、地理學、醫學、教育學、心理學、語言學、倫理學、藝術、社會工作學及法律學等與社會科學概論相關的一門學科。.

新!!: 同餘和社会科学 · 查看更多 »

符号

在一种认知体系中,符号是指代一定意义的意象,可以是图形图像、文字组合,也可以是声音信号、建筑造型,甚至可以是一种思想文化、一个时事人物。例如“.

新!!: 同餘和符号 · 查看更多 »

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

新!!: 同餘和等价关系 · 查看更多 »

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

新!!: 同餘和等价类 · 查看更多 »

算术基本定理

算术基本定理,又称为正整數的唯一分解定理,即:每个大于1的自然数均可写为質數的积,而且这些素因子按大小排列之后,写法僅有一種方式。例如:6936.

新!!: 同餘和算术基本定理 · 查看更多 »

紐結理論

纽结理论 (Knot theory) 是拓扑学的一个分支,研究纽结的拓扑学特性。.

新!!: 同餘和紐結理論 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 同餘和素数 · 查看更多 »

经济

經濟是指一定範圍(國家、區域、等)內,組織一切生產、分配、流通和消費活動與關係的系統之總稱。另一涵意是隐藏的不平等的欲望交换,經世濟民是和諧的分配不平等化。而研究經濟問題、探討經濟發展規律、解釋經濟現象成因的社會科學即稱為經濟學。.

新!!: 同餘和经济 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 同餘和群论 · 查看更多 »

音乐

音樂,廣義而言,就是指任何以聲音組成的藝術。英文Music一詞源於古希臘語的μουσική(mousike),意即缪斯(muse)女神的藝術。而中文的音樂二字,許慎《說文解字》解釋為「音,聲也。生於心,有節於外,謂之音。」認為音樂和聲音的區別,在於音樂需要透過人心去想像和創造。音樂可分為創作、演奏、聆聽三個過程,在不同文化和社會,對於音樂的過程及其重要性都有不同的理解。例如在西非鼓樂里,每個人皆是參與者,人們不會區分作曲者、演奏者和聆聽者的身份。 至於何謂聲音、噪音和音樂的區別,沒有公認的標準。因為音樂和數學、物理相關,歐洲自古希臘時代開始,有人論述樂理。在西方樂理中,音樂的主要元素有音高(或聲音的頻率)、節奏和音色。不同的音高重疊形成和聲,音高依據節奏進行成為旋律,常用的音高形成音階和調性,規律性的強拍和弱拍形成節拍,拍子的快慢構成速度。但近代有不少音樂家不認同傳統的理解,例如二十世紀美國作曲家約翰·凱吉認為任何聲音和靜默皆是音樂。音樂可以分為不同種類,但每種種類的區別常常是含糊和具爭議的。 音樂可以用樂譜描述,依據樂譜演奏,但也有不少音樂類型如民歌或爵士樂是由演奏者即興創作的。樂譜作為一種符號的語言,只能描述聲音的屬性或指示演奏所需的技巧,卻無法記錄聲音本身。因此在錄音技術出現之前,欣賞音樂必需現場聆聽,或自己親身參與演奏。傳統上欣賞音樂有特定的場所,從古時的宮庭、教堂、廟宇到今天的音樂廳、酒吧等等。十九世紀末,留聲機的發明令聲音可以记录和複製,改變了欣賞音樂的模式,一般認為錄音技術和大眾媒體是流行音樂形成的主要因素。現在人們可以在家中聆聽唱片和音樂錄像,透過無線電以收音機和電視接收聲音的訊號,也可以携帶隨身聽在任何一個地方聆聽音樂。 演奏音樂需要透過歌唱或樂器。廣義的樂器包括一切可以發出聲音的工具,在石器時代人們已經開始製作原始的樂器。今天電腦和不少電子音樂產品可以透過MIDI製作音樂。 音樂是一种需要學習的技能,而在不少國家的基礎教育中包括有音樂課,而一些音樂學院則提供專業的音樂教育。音乐学是一個歷史的科学的研究音乐的广阔领域,其中包括音乐理论和音乐史。另外自十九世紀末開始有民族音樂學,研究各地不同的音樂文化。.

新!!: 同餘和音乐 · 查看更多 »

視覺藝術

視覺藝術(Visual Arts),簡稱視藝,是一種藝術形式,是指本質上是以視覺目的為創作重點的作品,例如素描、繪畫、攝影、版畫、燈光和電影。而牽涉到三維立體空間物件的作品,例如雕塑、建築及陶艺則稱為造型藝術(plastic arts),但有時也視為是視覺藝術的一部份。許多其他的藝術形式也會包含視覺藝術的成份,因此在定義上並不是非常嚴格。許多的藝術形式(像表演藝術、概念藝術及)包括視覺藝術的概念在內,但也包括其他的藝術概念。許多应用艺术也列在視覺藝術中,例如工業設計、平面設計、服裝設計、室內設計及裝飾藝術等形式。 現今「視覺藝術」一詞的含义包括了绘画、雕塑、建筑、工艺美术、摄影,和各种与艺术有关的设计。在十九世紀下半葉工藝美術運動(Arts and Crafts movement)於英國等地興起之前,「視覺藝術家」僅指從事繪畫和雕塑創作的藝術家,而不包括從事手工藝(handicraft)的工藝美術藝術家。 在西方藝術中認為繪畫的藝術價值是視覺藝術中最高的,在東方藝術中也有類似的情形。在兩種文化中繪畫都是極高度依靠畫家的想像力,而且畫家最不需參與日常的勞動。在中國畫中評價最高的是「文人畫」,理論上是不太參與勞作的文人所畫。西方的藝術分類也有類似的情形。.

新!!: 同餘和視覺藝術 · 查看更多 »

計算機代數系統

計算機代數系統(computer algebra system,縮寫作:CAS)是進行符號運算的軟件。這種系統的要件是數學表示式的符號運算。.

新!!: 同餘和計算機代數系統 · 查看更多 »

高级加密标准

進階加密标准(Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一種區塊加密标准。这个标准用来替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,進階加密標準由美國國家標準與技術研究院(NIST)於2001年11月26日發佈於FIPS PUB 197,並在2002年5月26日成為有效的標準。2006年,進階加密标准已然成為对称密钥加密中最流行的演算法之一。 该演算法為比利时密码学家Joan Daemen和Vincent Rijmen所設計,結合兩位作者的名字,以Rijndael為名投稿進階加密標準的甄選流程。(Rijndael的發音近於"Rhine doll").

新!!: 同餘和高级加密标准 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

新!!: 同餘和计算机科学 · 查看更多 »

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

新!!: 同餘和輾轉相除法 · 查看更多 »

迪菲-赫尔曼密钥交换

#重定向 迪菲-赫爾曼密鑰交換.

新!!: 同餘和迪菲-赫尔曼密钥交换 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 同餘和自然数 · 查看更多 »

集合 (数学)

集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

新!!: 同餘和集合 (数学) · 查看更多 »

集合划分

在数学中,集合X的划分是把X分割到覆盖了X的全部元素而又不重叠的“部分”或“块”或“单元”中。更加形式的说,这些“单元”對于被划分的集合是既又相互排斥的。.

新!!: 同餘和集合划分 · 查看更多 »

雅可比符号

在数论中,雅可比符号是勒让德符号的一种推广,首先由普鲁士数学家卡尔·雅可比在1837年引进。雅可比符号在数论中的各个分支中都有应用,尤其是在计算数论的素性检验、大数分解以及密码学中有重要作用。.

新!!: 同餘和雅可比符号 · 查看更多 »

除法

数学中,尤其是在基本计算裏,除法可以看成是「乘法的反运算」,也可以理解为「重复的减法」。除法运算的本质就是「把参与运算的除数变为1,得出被除数的值」。 例如:6 \div 3.

新!!: 同餘和除法 · 查看更多 »

RSA加密演算法

RSA加密演算法是一种非对称加密演算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。 1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被發表。 對极大整数做因数分解的难度決定了RSA算法的可靠性。換言之,對一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法的话,那么用RSA加密的--的可靠性就肯定会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式--。到目前为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的--实际上是不能被--的。 1983年9月12日麻省理工学院在美国为RSA算法申请了专利。这个专利2000年9月21日失效。由于该算法在申请专利前就已经被發表了,在世界上大多数其它地区这个专利权不被承认。.

新!!: 同餘和RSA加密演算法 · 查看更多 »

校验和

校验和(Checksum)是冗余校验的一种形式。 ----错误检测方法,对经过空间(如通信)或时间(如-zh-hant:電腦記憶體;zh-hans:计算机存储-)所传送--的完整性进行检查的一种简单方法。 计算机领域常见的校验和的方法有循环冗余校验(CRC)、MD5、SHA家族等。 產生校驗和的實際過程一般是向校驗函數或校驗和算法輸入給定的數據,一個良好的校驗和算法通常會對進行很小的修改的輸入數據都會輸出一個顯著不同的值。.

新!!: 同餘和校验和 · 查看更多 »

概念

概念是抽象的、普遍的想法,是充当指明实体、事件或关系的范畴或类的实体。在它们的外延中忽略事物的差异,如同它们是同一的去处理它们,所以概念是抽象的。它们等同的适用于在它们外延中的所有事物,所以它们是普遍的。概念也是命题的基本元素,如同词是句子的基本语义元素一样。 概念是意义的载体,而不是意义的主动者。一个单一的概念可以用任何数目的语言来表达;术语则是概念的表达形式。狗 的概念可以表达为德语的 Hund,法语的 chien 和西班牙语的 perro。概念在一定意义上独立于语言的事实使得翻译成为可能 - 在各种语言中词有同一的意义,因为它们表达了相同的概念。 概念是人类对一个复杂的过程或事物的理解。从哲学的观念来说概念是思维的基本单位。在日常用语中人们往往将概念与一个词或一个名词(術语)同等对待。.

新!!: 同餘和概念 · 查看更多 »

模除

模除(又稱模数、取模運算等)是一种不具交换性的二元运算。.

新!!: 同餘和模除 · 查看更多 »

標識符

標識符(英文對應詞:identifier,縮寫為ID),又稱為識別碼,是一個用來識別物件的名稱,識別對象可能是概念、具體可數的物體或是不可數的物質。標識符可能是字、編號、字母、符號,也可能是由上述元素所組成。 在编程语言中,标识符就是程序员自己规定的具有特定含义的词,比如类名称,属性名称,变量名等。.

新!!: 同餘和標識符 · 查看更多 »

欧拉函数

在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).

新!!: 同餘和欧拉函数 · 查看更多 »

歐拉定理

歐拉定理可以指:.

新!!: 同餘和歐拉定理 · 查看更多 »

法律

法律(Law) 是一種由規則組成的體系,經由社會組織來施與強制力量,規範個人行為。法律是一系列的規則,通常需要經由一套制度來落實。但在不同的地方,法律體系會以不同的方式來闡述人們的法律權利與義務。其中一種區分的方式便是分為歐陸法系和英美法系兩種。有些國家則會以他們的宗教法條為其法律的基礎。 學者們從許多不同的角度來研究法律,包括從法制史和哲學,或從如經濟學與社會學等社會科學的方面來探討。法律的研究來自於對何為平等、公正和正義等問題的訊問,這並不都總是簡單的。法国作家阿納托爾·法郎士於1894年說:「在其崇高的平等之下,法律同時禁止富人和窮人睡在橋下、在街上乞討和偷一塊麵包。」 在一個典型的三權分立國家中,創造和解釋法律的核心機構為政府的三大部門:公正不倚的司法、民主的立法和負責的行政。而官僚、軍事和警力則是執行法律,並且讓法律為人民服務時相當重要的部分。除此之外,若要支持整個法律系統的運作,同時帶動法律的進步,則獨立自主的法律專業人員和充滿生氣的公民社會也是不可或缺的一部分。 古希臘哲學家亞里斯多德於西元前350年寫道:「法治比任何一個人的統治來得更好。.

新!!: 同餘和法律 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 同餘和有限域 · 查看更多 »

最大公因數

数学中,兩個或多個整數的最大公因數(greatest common factor,hcf)指能够整除这些整数的最大正整数(这些整数不能都为零)。例如8和12的最大公因数为4。最大公因数也称最大公约数(greatest common divisor,gcd)。 整数序列a的最大公因数可以記為(a_1, a_2, \dots, a_n)或\gcd(a_1, a_2, \dots, a_n)。 求兩個整數最大公因數主要的方法:.

新!!: 同餘和最大公因數 · 查看更多 »

最小公倍數

最小公倍數是数论中的一个概念。若有一個數X,可以被另外兩個數A、B整除,且X大於(或等于)A和B,則X為A和B的公倍數。A和B的公倍數有無限個,而所有的公倍數中,最小的公倍數就叫做最小公倍數。兩個整數公有的倍數称为它们的公倍数,其中最小的一個正整数称为它们两个的最小公倍数。同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数。n整数a_1, a_2, \cdots, a_n的最小公倍数一般记作:,或者参照英文记法记作\operatorname(a_1, a_2, \cdots, a_n),其中lcm是英语中“最小公倍数”一词(lowest common multiple)的首字母缩写。 对分數进行加減运算時,要求兩數的分母相同才能計算,故需要--;标准的计算步骤是将兩個分數的分母--成它们的最小公倍數,然后将--后的分子相加。.

新!!: 同餘和最小公倍數 · 查看更多 »

星期的計算

星期的計算是以數學方法計算出某一指定日期是在一周中的哪一天。多種數學算法可計算出過去或未來某一指定日期,是屬於一周中的星期幾,包括(Doomsday Rule),Babwani公式等,但其實這些算法皆基于类似的机制相互变化而来,只是透過不同規則取得相同結果。 算法的典型應用,是計算某人的出生日期或某重大事件的發生日期,是在一周中的哪一天。.

新!!: 同餘和星期的計算 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 同餘和数学 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 同餘和数学家 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 同餘和数论 · 查看更多 »

数据结构

在计算机科学中,数据结构(data structure)是计算机中存储、组织数据的方式。 数据结构意味着介面或封装:一个数据结构可被视为两个函数之间的介面,或者是由数据类型联合组成的存储内容的访问方法封装。 大多数数据结构都由数列、记录、可辨识联合、引用等基本类型构成。举例而言,可為空的引用(nullable reference)是引用与可辨识联合的结合体,而最简单的链式结构链表则是由记录与可空引用构成。 数据结构可透过程式语言所提供的数据类型、引用及其他操作加以实现。一个设计良好的数据结构,应该在尽可能使用较少的时间与空间资源的前提下,支援各種程式執行。 不同种类的数据结构适合不同种类的应用,部分資料結構甚至是為了解決特定問題而設計出來的。例如B树即為加快樹狀結構存取速度而設計的資料結構,常被應用在資料庫和檔案系統上。 正確的数据结构選擇可以提高演算法的效率(請參考)。在電腦程式设计的過程裡,选择适当的数据结构是一項重要工作。许多大型系统的編寫经验顯示,程式設計的困难程度与最终成果的质量与表现,取决于是否选择了最適合的数据结构。 系統架構的关键因素是数据结构而非算法的見解,导致了多种形式化的设计方法与编程语言的出现。绝大多数的语言都带有某种程度上的模块化思想,透过将数据结构的具体实现封装隐藏于使用者介面之后的方法,来让不同的应用程序能够安全地重用这些数据结构。C++、Java、Python等面向对象的编程语言可使用类 (计算机科学)来達到這個目的。 因为数据结构概念的普及,现代编程语言及其API中都包含了多种預設的数据结构,例如 C++ 标准模板库中的容器、Java集合框架以及微软的.NET Framework。.

新!!: 同餘和数据结构 · 查看更多 »

整除规则

整除是数学中两个自然数之间的一种关系。自然数a可以被自然数b整除,是指b是a的因數,且a是b的整数倍数,也就是a除以b没有餘数。下面列出了十进制中判断一个整数除以另外一个整数的商为整数,且余数为零的一些规则。.

新!!: 同餘和整除规则 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 同餘和整数 · 查看更多 »

整数分解

在數學中,整數分解(integer factorization)又稱質因數分解(prime factorization),是將一個正整數寫成幾個因數的乘積。例如,給出45這個數,它可以分解成32 ×5。根據算術基本定理,這樣的分解結果應該是獨一無二的。這個問題在代數學、密碼學、計算複雜性理論和量子計算機等領域中有重要意義。.

新!!: 同餘和整数分解 · 查看更多 »

重定向到这里:

同余模算术

传出传入
嘿!我们在Facebook上吧! »