我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

数论

指数 数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

目录

  1. 74 关系: 埃拉托斯特尼筛法卡爾·弗里德里希·高斯千禧年大獎難題古希腊双生质数合数君士坦丁堡大卫·希尔伯特完全数安德魯·懷爾斯密码学丟番圖逼近丟番圖方程中国剩余定理平方数亏格二次互反律互質五邊形數定理代数几何代數整數代數數代數數論当且仅当微积分学保罗·埃尔德什初等數論哥德巴赫猜想哈代-李特爾伍德圓法克里斯蒂安·哥德巴赫克里斯蒂安·惠更斯因數皮埃爾·德·費馬理查·泰勒 (數學家)算法算术素数素数公式純粹數學约瑟夫·拉格朗日狄利克雷定理相亲数華林問題萊昂哈德·歐拉類域論複分析解析函数解析数论马兰·梅森質數定理... 扩展索引 (24 更多) »

埃拉托斯特尼筛法

埃拉托斯特尼筛法(κόσκινον Ἐρατοσθένους,sieve of Eratosthenes ),簡稱--,也有人称素数筛。这是一種簡單且历史悠久的筛法,用來找出一定範圍內所有的質數。 所使用的原理是從2開始,將每個質數的各個倍數,標記成合數。一個質數的各個倍數,是一個差為此質數本身的等差數列。此為這個篩法和試除法不同的關鍵之處,後者是以質數來測試每個待測數能否被整除。 埃拉托斯特尼篩法是列出所有小質數最有效的方法之一,其名字來自於古希臘數學家埃拉托斯特尼,並且被描述在另一位古希臘數學家尼科馬庫斯所著的《算術入門》中。.

查看 数论和埃拉托斯特尼筛法

卡爾·弗里德里希·高斯

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.

查看 数论和卡爾·弗里德里希·高斯

千禧年大獎難題

千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.

查看 数论和千禧年大獎難題

古希腊

位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.

查看 数论和古希腊

双生质数

#重定向 孪生素数.

查看 数论和双生质数

合数

合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.

查看 数论和合数

君士坦丁堡

君士坦丁堡(Κωνσταντινούπολις、Κωνσταντινούπολη;Constantinopolis;قسطنطینیه;现代İstanbul)又譯康斯坦丁堡,是土耳其最大城市伊斯坦布尔的舊名,現在則指伊斯坦堡金角湾與马尔马拉海之間的地區。它曾经是羅馬帝国、拜占庭帝国、拉丁帝国和奥斯曼帝国的首都。 公元330年,罗马皇帝君士坦丁一世在拜占庭建立新都,命名為新羅馬(Nova Roma;Νέα Ρώμη),但该城普遍被以建立者之名称作君士坦丁堡。在公元12世纪时Rosenberg, Matt.

查看 数论和君士坦丁堡

大卫·希尔伯特

大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.

查看 数论和大卫·希尔伯特

完全数

完全数,又稱完美數或完備數,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等於它本身,完全数不可能是楔形數。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6,恰好等於本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28,也恰好等於本身。后面的数是496、8128。.

查看 数论和完全数

安德魯·懷爾斯

安德魯·約翰·懷爾斯爵士,KBE,FRS(Sir Andrew John Wiles,,),英國數學家,居於美國。因證明費馬最後定理,獲得2016年阿貝爾獎。.

查看 数论和安德魯·懷爾斯

密码学

密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.

查看 数论和密码学

丟番圖逼近

丢番图分析是数论的一个分支。最经典的丢番图逼近主要用於有理数逼近实数,亦即实数的有理逼近相关问题。其中有理数一般用分数形式表达,且一律要求分子为整数,分母为正整数,通常要求是既约分数。 "丢番图逼近"的名称源于古希腊数学家丢番图。这是因为有理逼近可以归结为求不等式整数解的问题,而求方程整数解的问题一般称为丢番图方程(或不定方程),故而得名。事实上,丢番图逼近与不定方程的研究确有颇多相关。 丢番图逼近的首要问题是寻求实数的最佳(有理)丢番图逼近,简称最佳逼近。具体来说,对于一个实数 \alpha,希望找到一个"最优"的有理数 p/q 作为 \alpha 的近似,使在分母不超过 q 的所有有理数中,p/q 与 \alpha 的距离最小。这里的"距离"可以是欧氏距离,即两数之差的绝对值;也可以用 |q\alpha-p| 等方式度量。满足此类要求的有理数 p/q 称为实数 \alpha 的一个最佳逼近。关于如何寻找实数的最佳逼近及相关论题,已于18世纪随着连分数理论的发展得到基本解决。 其后,该领域的主要注意力转向对有理逼近的误差进行估计、度量,以给出尽可能精确的上下界(一般用分母的函数表示)。作为分母的函数, 这种上下界的阶与 \alpha 的性质密切相关。当 \alpha 分别为有理数、代数数、超越数时,其最佳逼近误差下界的阶是不同的。基于这种思想,刘维尔在1844年建立了有关代数数逼近的一个基本结论,并由此具体地构造出了一个超越数(参见刘维尔数),证明了它的超越性。这在人类历史上尚属首次。由此可见,丢番图逼近与数论的另一分支——超越数论紧密相关。 除了上述最经典的单个实数的有理逼近问题,该领域还包括多个实数的联立逼近,非齐次逼近,实数的代数数逼近,一致分布(均匀分布)等方面。甚至连p进数上的丢番图逼近也有颇多研究。.

查看 数论和丟番圖逼近

丟番圖方程

丟番圖方程,是未知数只能使用整數的整數係數多項式等式;即形式如a_1 x_1^+a_2 x_2^+......+a_n x_n^.

查看 数论和丟番圖方程

中国剩余定理

中國剩--定理,又稱中國餘數定理,是数论中的一個关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则以及求解方法。也称为孫子定理,古有「韓信點兵」、「孫子定理」、「求一术」(宋沈括)、「鬼谷算」(宋周密)、「隔墻算」(宋 周密)、「剪管術」(宋杨辉)、「秦王暗點兵」、「物不知數」之名。.

查看 数论和中国剩余定理

平方数

数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9.

查看 数论和平方数

亏格

数学上,亏格(genus)有几个不同但密切相关的意思:.

查看 数论和亏格

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art.

查看 数论和二次互反律

互質

互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.

查看 数论和互質

五邊形數定理

五邊形數定理是一個由歐拉發現的數學定理,描述歐拉函數\phi(q)展開式的特性 。歐拉函數的展開式如下: 亦即 歐拉函數展開後,有些次方項被消去,只留下次方項為1, 2, 5, 7, 12,...的項次,留下來的次方恰為廣義五邊形數。 若將上式視為幂級數,其收斂半徑為1,不過若只是當作形式冪級數來考慮,就不會考慮其收斂半徑。.

查看 数论和五邊形數定理

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

查看 数论和代数几何

代數整數

在數學裡,代數整數(algebraic integer)是複數中的一类。一个複数α是代数整数当且仅当它是某个個整系數的首一多項式P(x)的根。其中首一(英文:monic)意謂最高冪次項的系數是1。 因此,所有代數整數都是代數數,但並非所有代數數都是代數整數。所有代数整数构成一个环,通常记作\mathbb。 如果P(x)是整係數本原多項式(即系數的最大公因数是1的多项式),但非首一多項式,則P的根都不是代數整數。.

查看 数论和代數整數

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

查看 数论和代數數

代數數論

在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.

查看 数论和代數數論

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 数论和当且仅当

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

查看 数论和微积分学

保罗·埃尔德什

#重定向 埃尔德什·帕尔.

查看 数论和保罗·埃尔德什

初等數論

初等數論意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國餘數定理、費馬小定理、二次互反律等等。.

查看 数论和初等數論

哥德巴赫猜想

哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陳述為: 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而將一个給定的偶數分拆成兩個質數之和,则被稱之為此數的哥德巴赫分拆。例如, 換句話說,哥德巴赫猜想主張每個大於等於4的偶數都是哥德巴赫數——可表示成兩個質數之和的數。哥德巴赫猜想也是二十世纪初希爾伯特第八問題中的一個子問題。 其實,也有一部分奇數可以用兩個質數的和表示,大多數的奇數無法用兩個質數的和表示,例如:15.

查看 数论和哥德巴赫猜想

哈代-李特爾伍德圓法

在數學裡,哈代-勒特伍德圓法是在解析數論中最常被使用的技術之一。其是以高德菲·哈羅德·哈代和約翰·恩瑟·李特爾伍德來命名的,他們是在一連討論華林問題的論文中發展了此一技術。這個觀念一開始的起源通常被歸功於哈代在1916年和1917年中和拉馬努金在整數分拆的漸進分析中之研究。這被許多其他的研究者們所使用,包括哈羅德·達芬波特和維諾格拉多夫,他們稍微地修改了其公式(由複分析移至指數和),但沒有改變大略的內容。上千篇論文使用著此一方法,且直到2005年,這個方法仍然被使用來產生新的成果。 問題中的圓一開始是在複數平面上的單位圓。假定問題一開始是一連串的複數 想要求得其中的一些可能的漸進類型 其中有一些啟發性的方法可以用來猜測F可能的類型,先寫下 ,一個冪級數生成函數。其中有些有趣的例子在於f的收斂半徑等於1的條件下,故將問題假裝已調整至承現出滿足此一條件。 經由此規劃之後,便可以直接由留數定理得出對每個整數 n ≥ 0, 其中這個積分是繞著圓心為0且半徑為0 \zeta\.

查看 数论和哈代-李特爾伍德圓法

克里斯蒂安·哥德巴赫

克里斯蒂安·哥德巴赫(Christian Goldbach, ),又译歌德巴赫,普魯士数学家,他在數學上的研究以數論為主,作为哥德巴赫猜想的提出者而闻名。 哥德巴赫出生于哥尼斯堡,本学法学,由于在访问欧洲各国期间结识了伯努利家族而对数学研究有了兴趣。1725年到俄国,被选为彼得堡科学院院士,1728年起擔任俄国沙皇彼得二世的教師,1742年移居莫斯科,进入俄国外交部供职。哥德巴赫同欧洲许多著名的数学家有来往,他长期保持与莱布尼茨、欧拉和尼古拉斯·伯努利等人的通信,为后人留下了大量宝贵的数学资料。.

查看 数论和克里斯蒂安·哥德巴赫

克里斯蒂安·惠更斯

克里斯蒂安·惠更斯(Christiaan Huygens,),荷兰物理学家、天文学家和数学家,土卫六的发现者。他还发现了猎户座大星云和土星光环。.

查看 数论和克里斯蒂安·惠更斯

因數

因數是一個常見的數學名詞,又名「--」。.

查看 数论和因數

皮埃爾·德·費馬

埃爾·德·費馬(姓氏依發音亦作費爾瑪。Pierre de Fermat,,法語發音),法國律師、業餘數學家(也被称为数学大师、业余数学家之王)。他在數學上的成就不低于職業數學家,似乎對數論最有興趣,亦對現代微積分的建立有所貢獻。.

查看 数论和皮埃爾·德·費馬

理查·泰勒 (數學家)

查·泰勒(Richard Taylor,),英國數學家,主要研究數論。.

查看 数论和理查·泰勒 (數學家)

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

查看 数论和算法

算术

算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

查看 数论和算术

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 数论和素数

素数公式

--,又称--,在数学领域中,表示一种能够僅产生质数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的质数,并且对每个输入的值,此公式产生的结果都是质数。由于质数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述條件的质数公式,但对于质数公式应该具备的性质已经有了大量的了解。.

查看 数论和素数公式

純粹數學

一般而言,純粹數學是一門專門研究數學本身,不以应用为目的的學問(至少可见范围内无法应用),相對於應用數學而言。純粹數學以其严格、抽象和美丽著称。自18世纪以来,純粹數學成为数学研究的一个特定种类,并随着探险、天文学、物理学、工程学等的发展而发展。 純粹數學以數論為其代表。.

查看 数论和純粹數學

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

查看 数论和约瑟夫·拉格朗日

狄利克雷定理

在數論中,狄利克雷定理說明對於任意互質的正整數a,d,有無限多個質數的形式如a+nd,其中n為正整數,即在算術級數a+d,a+2d,a+3d,...

查看 数论和狄利克雷定理

相亲数

亲数(Amicable Pair),又称亲和数、友愛數、友好數,指兩個正整數中,彼此的全部约数之和(本身除外)与另一方相等。毕达哥拉斯曾說:“朋友是你灵魂的倩影,要像220与284一样亲密。” 每一對親和數都是過剩數配虧數,較小的是過剩數,較大的是虧數。 例如220与284:.

查看 数论和相亲数

華林問題

华林问题是数论中的问题之一。1770年,爱德华·华林猜想,对于每个非1的正整数k,皆存在正整数g(k),使得每个正整数都可以表示为至多g(k)个k次方数(即正整數的k次方)之和。.

查看 数论和華林問題

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

查看 数论和萊昂哈德·歐拉

類域論

類域論(Class field theory)是代數數論的一支, 是关于阿贝尔扩域的理论,由日本數學家高木貞治所開創的數學領域。 类域论的最主要定理是“阿贝尔扩张的Galois群(及其子群格)同构于基域的(广义)理想类群(及其子群格)”, 有许多定理和表述方式.

查看 数论和類域論

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

查看 数论和複分析

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

查看 数论和解析函数

解析数论

解析数论(analytic number theory),為數論中的分支,它使用由数学分析中發展出的方法,作为工具,来解决数论中的问题。它首次出現在數學家狄利克雷在1837年導入狄利克雷L函數,來証明狄利克雷定理。解析数论的成果中,較廣為人知的是在質數(例如質數定理及黎曼ζ函數)及(例如哥德巴赫猜想及華林問題)。.

查看 数论和解析数论

马兰·梅森

兰·梅森(Marin Mersenne,),法国神学家、数学家、音乐理论家。.

查看 数论和马兰·梅森

質數定理

在數論中,素数定理描述素数在自然數中分佈的漸進情況,給出隨著數字的增大,質數的密度逐漸降低的直覺的形式化描述。1896年法國數學家雅克·阿達馬和比利時數學家德拉瓦莱普森(Charles Jean de la Vallée-Poussin)先後獨立給出證明。證明用到了複分析,尤其是黎曼ζ函數。 素数的出現規律一直困惑著數學家。一個個地看,素数在正整數中的出現沒有什麼規律。可是總體地看,素数的個數竟然有規可循。對正實數x,定義π(x)為素数计数函数,亦即不大於x的素数個數。數學家找到了一些函數來估計π(x)的增長。以下是第一個這樣的估計。 其中 ln x 為 x 的自然對數。上式的意思是當 x 趨近無限,π(x)與x/ln x的比值趨近 1。但這不表示它們的數值隨著 x 增大而接近。 下面是對π(x)更好的估計: 其中 (x).

查看 数论和質數定理

贝赫和斯维讷通-戴尔猜想

贝赫和斯维讷通-戴尔猜想(英文:Birch and Swinnerton-Dyer Conjecture),简称为BSD猜想。 设 E 是定义在代数数域 K 上的椭圆曲线,E(K) 是 E 上的有理点的集合,已经知道 E(K) 是有限生成交换群。记 L(s,E) 是 E 的L函数,则此猜想如下: Category:数论 Category:数学中未解决的问题 Category:橢圓曲線 Category:千禧年大奖难题.

查看 数论和贝赫和斯维讷通-戴尔猜想

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

查看 数论和费马大定理

费马小定理

费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么a^p - a 是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同餘。).

查看 数论和费马小定理

黎曼猜想

黎曼猜想由德国數學家波恩哈德·黎曼(Bernhard Riemann)於1859年提出。它是數學中一個重要而又著名的未解決的問題(猜想界皇冠)。多年來它吸引了許多出色的數學家為之絞盡腦汁。.

查看 数论和黎曼猜想

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

查看 数论和黎曼ζ函數

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

查看 数论和輾轉相除法

闵可夫斯基不等式

在数学中,闵可夫斯基不等式(Minkowski inequality)表明Lp空间是一个赋范向量空间。设 S 是一个度量空间,1 \le p\le \infty, f,g \in L^p(S),那么 f + g \in L^p(S),我们有: 如果 1 ,等号成立当且仅当 \exists k\le 0,f.

查看 数论和闵可夫斯基不等式

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 数论和P進數

椭圆积分

在积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。Guilio Fagnano和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数 f \,的积分 其中R \,是其两个参数的有理函数,P \,是一个无重根的3 \,或4 \,阶多项式,而c \,是一个常数。 通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在P \,有重根的时候,或者是R \,,\left(x,y \right) \,没有y \,的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。 除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为椭圆积分的逆函数被发现的,特别是这一个:F.

查看 数论和椭圆积分

模形式

模形式是數學上一個滿足一些泛函方程與增長條件、在上半平面上的(複)解析函數。因此,模形式理論屬於数论的範疇。模形式也出現在其他領域,例如代數拓撲和弦理論。 模形式理論是更廣泛的自守形式理論的特例。自守形式理論的發展大致可分成三期:.

查看 数论和模形式

欧几里得

欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.

查看 数论和欧几里得

波恩哈德·黎曼

格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.

查看 数论和波恩哈德·黎曼

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 数论和有理数

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

查看 数论和有限域

斐波那契

費波那契,又稱比薩的列奧納多(Leonardo Pisano Bigollo,或稱Leonardo of Pisa, Leonardo Pisano, Leonardo Bonacci, Leonardo Fibonacci,),意大利數學家,西方第一個研究費波那契數,並將現代書寫數和乘數的位值表示法系統引入歐洲。 列奥纳多的父親Guilielmo(威廉),外號Bonacci(意即「好、自然」或「簡單」)。因此列奧納多就得到了外號費波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。威廉是商人,在北非一帶工作(今阿尔及利亚贝贾亚),當時仍是小伙子的列奧納多已經開始協助父親工作。於是他就學會了阿拉伯數字。 有感使用阿拉伯數字比羅馬數字更有效,列奧納多前往地中海一帶向當時著名的阿拉伯數學家學習,約於1200年回國。1202年,27歲的他將其所學寫進《計算之書》(Liber Abaci)。這本書透過在記賬、重量計算、利息、匯率和其他的應用,顯示了新的數字系統的實用價值。這本書大大影響了歐洲人的思想,不過在十三世紀後印制術發明之前,十進制數字並不流行(例子:,Lienhart Holle在Ulm印制)。 列奧納多曾成為熱愛數學和科學的神聖羅馬帝國皇帝腓特烈二世的坐上客。.

查看 数论和斐波那契

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

查看 数论和施普林格科学+商业媒体

文艺复兴

文艺复兴运动(Rinascimento,由ri-(“重新”)和nascere(“出生”)构成)通称为文艺复兴,简称为文复,是一场大致发生在14世纪至17世纪的文化运动,在中世纪晚期发源于意大利中部的佛罗伦萨,即意大利文艺复兴,后扩展至欧洲各国。 “文艺复兴”一词亦可粗略地指代这一历史时期,但由于欧洲各地因其引发的变化并非完全一致,故“文艺复兴”只是对这一时期的通称。这场文化运动基本上以復興古羅馬為名,動機大致上是要改變中世紀社會逐漸嚴重的腐敗,卻不是將古羅馬原樣重現,反而是加入新思考和檢討,所以做出實際上是一種徹底不同的新型態文化變革,其中雖囊括了对古典文献的重新学习和承接,卻在绘画方面透過直线透视法的发展,以及逐步而广泛开展的中古時代教育变革,乃至於人體結構、化學、天文技術的知識的追求等等,這些極重要的近代科學發展,除了打破神權時代,也打破了希臘羅馬的古文化。传统观点认为,这种知识上的转变让文艺复兴发挥了衔接中世纪和近代的作用。尽管文艺复兴在知识、社会和政治各个方面都引发了巨大變革,但令其闻名于世的或许还在于这一时期的艺术成就,以及列奥纳多·达芬奇、米开朗基罗等博学家做出的創新贡献。 一般认为,文复始于14世纪托斯卡纳的佛罗伦萨,但对此尚有质疑之声。就这场运动的起源和特点而言,多种理论已经提出了各自的见解,但其关注的焦点不尽相同:其中包括有当时佛罗伦萨的社会和公民的特点;当地的政治结构;当地统治阶级美第奇家族的赞助Strathern, Paul The Medici: Godfathers of the Renaissance (2003);以及奥斯曼土耳其人攻陷君士坦丁堡后,大批流入意大利的及书籍。Encyclopedia Britannica,Renaissance,2008,O.Ed.Har, Michael H.History of Libraries in the Western World,Scarecrow Press Incorporate,1999,ISBN 978-0-8108-3724-9.Norwich, John Julius,A Short History of Byzantium,1997,Knopf,ISBN 978-0-679-45088-7.史学上关于文艺复兴的内容很多且颇为复杂,而“文艺复兴”作为词汇的作用,及其作为历史过渡期的意义,都引发了史学家的诸多争论。Brotton, J., The Renaissance: A Very Short Introduction, OUP, 2006.

查看 数论和文艺复兴

无穷递降法

无穷递降法,又名無窮遞減法,是数学中证明方程无解的一种方法。.

查看 数论和无穷递降法

愛德華·梅特蘭·賴特

愛德華·梅特蘭·賴特爵士(Sir Edward Maitland Wright,),和他在牛津大學的導師哈代合寫《數論介紹》(An Introduction to the Theory of Numbers)以著名的英國數學家。.

查看 数论和愛德華·梅特蘭·賴特

数学归纳法

数学归纳法(Mathematical Induction、MI、ID)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。 虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事實上,所有數學證明都是演繹法。.

查看 数论和数学归纳法

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

查看 数论和整数

整數分拆

一個正整數可以寫成一些正整數的和。在數論上,跟這些和式有關的問題稱為整數拆分、整數剖分、整數分割、分割數或切割數(Integer partition)。其中最常見的問題就是給定正整數n,求不同數組(a_1,a_2,...,a_k)的數目,符合下面的條件:.

查看 数论和整數分拆

拉丁语

拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.

查看 数论和拉丁语

1

1(一/壹)是0与2之间的自然数,是最小的正奇數.

查看 数论和1

贝赫和斯维讷通-戴尔猜想费马大定理费马小定理黎曼猜想黎曼ζ函數輾轉相除法闵可夫斯基不等式P進數椭圆积分模形式欧几里得波恩哈德·黎曼有理数有限域斐波那契施普林格科学+商业媒体文艺复兴无穷递降法愛德華·梅特蘭·賴特数学归纳法整数整數分拆拉丁语1