我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

合数

指数 合数

合數(也稱為合成數)是因數除了1和其本身外具有另一因數的正整數(定義為包含1和本身的因數大於或等於3個的正整數)。依照定義,每一個大於1的整數若不是質數,就會是合數。而0與1則被認為不是質數,也不是合數。例如,整數14是一個合數,因為它可以被分解成2 × 7。 起初105个合数为:4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140,141,142,143,144,145,146,147,148,150.

目录

  1. 14 关系: 半素数完全数因數算术基本定理素数高合成数質因子默比乌斯函数楔形数最大公因數最小公倍數整数01

  2. 初等数论
  3. 素數

半素数

数学中,两个素数的乘积所得的自然数我们称之为半素数(也叫双素数,二次殆素数)。开始的几个半素数是4, 6, 9, 10, 14, 15, 21, 22, 25, 26,...

查看 合数和半素数

完全数

完全数,又稱完美數或完備數,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等於它本身,完全数不可能是楔形數。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6,恰好等於本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28,也恰好等於本身。后面的数是496、8128。.

查看 合数和完全数

因數

因數是一個常見的數學名詞,又名「--」。.

查看 合数和因數

算术基本定理

算术基本定理,又称为正整數的唯一分解定理,即:每个大于1的自然数均可写为質數的积,而且这些素因子按大小排列之后,写法僅有一種方式。例如:6936.

查看 合数和算术基本定理

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 合数和素数

高合成数

合成数指一类整數,任何比它小的自然数的因子数目均比这个数的因子数目少。 最小的20个高合成数为: 高度合成数有无限个。证明这点,可用反证法。假设n是最大的高度合成数。显然2n比n有更多因子,所以2n才是最大的高度合成数,矛盾,故高度合成数有无限个。 大於6的高度合成數亦是豐數。 這些數常見於量度系統,在工程設計亦很常用,因為它們在分數計算時很方便。 若 Q(x)表示所有小於或等於x的高度合成数的数目,則存在两个均大於1的常数a,b,使得∶.

查看 合数和高合成数

質因子

質因子(或質因數)在數論裡是指能整除給定正整數的質數。根據算術基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。兩個沒有共同質因子的正整數稱為互質。因為1沒有質因子,1與任何正整數(包括1本身)都是互質。只有一個質因子的正整數為質數。 将一个正整数表示成质因数乘积的过程和得到的表示结果叫做质因数分解。显示质因数分解结果时,如果其中某个质因数出现了不止一次,可以用幂次的形式表示。例如360的质因数分解是: 其中的质因数2、3、5在360的质因数分解中的幂次分别是3,2,1。 数论中的不少函数与正整数的质因子有关,比如取值为的质因数个数的函数和取值为的质因数之和的函数。它们都是加性函数,但并非完全加性函数。.

查看 合数和質因子

默比乌斯函数

比乌斯函数或缪比乌斯函数\mu是指以下的函數: μ(n)的首25个值: 默比乌斯函数是一個積性函數。 以狄利克雷卷積的方法表示,則是 \mu * 1.

查看 合数和默比乌斯函数

楔形数

楔形数指可以表示成三个不同质数的积的正整数。将任何楔形数带入默比乌斯函数,结果都得-1.

查看 合数和楔形数

最大公因數

数学中,兩個或多個整數的最大公因數(greatest common factor,hcf)指能够整除这些整数的最大正整数(这些整数不能都为零)。例如8和12的最大公因数为4。最大公因数也称最大公约数(greatest common divisor,gcd)。 整数序列a的最大公因数可以記為(a_1, a_2, \dots, a_n)或\gcd(a_1, a_2, \dots, a_n)。 求兩個整數最大公因數主要的方法:.

查看 合数和最大公因數

最小公倍數

最小公倍數是数论中的一个概念。若有一個數X,可以被另外兩個數A、B整除,且X大於(或等于)A和B,則X為A和B的公倍數。A和B的公倍數有無限個,而所有的公倍數中,最小的公倍數就叫做最小公倍數。兩個整數公有的倍數称为它们的公倍数,其中最小的一個正整数称为它们两个的最小公倍数。同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数。n整数a_1, a_2, \cdots, a_n的最小公倍数一般记作:,或者参照英文记法记作\operatorname(a_1, a_2, \cdots, a_n),其中lcm是英语中“最小公倍数”一词(lowest common multiple)的首字母缩写。 对分數进行加減运算時,要求兩數的分母相同才能計算,故需要--;标准的计算步骤是将兩個分數的分母--成它们的最小公倍數,然后将--后的分子相加。.

查看 合数和最小公倍數

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

查看 合数和整数

0

0(〇/零)是-1与1之间的整数。0既不是正数也不是负数。0是偶数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数結構中都有著單位元這個很重要的性質。.

查看 合数和0

1

1(一/壹)是0与2之间的自然数,是最小的正奇數.

查看 合数和1

另见

初等数论

素數

亦称为 合成数。