目录
密码学
密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.
查看 半素数和密码学
公开密钥加密
公开密钥加密(Public-key cryptography),也称为非对称加密(asymmetric cryptography),是密碼學的一種演算法,它需要兩個密钥,一個是公開密鑰,另一個是私有密鑰;一個用作加密的時候,另一個則用作解密。使用其中一個密钥把明文加密后所得的密文,只能用相對應的另一個密钥才能解密得到原本的明文;甚至連最初用來加密的密鑰也不能用作解密。由於加密和解密需要兩個不同的密鑰,故被稱為非對稱加密;不同於加密和解密都使用同一個密鑰的對稱加密。雖然兩個密鑰在数学上相关,但如果知道了其中一个,并不能憑此计算出另外一个;因此其中一个可以公开,称为公钥,任意向外發佈;不公开的密钥为私钥,必須由用戶自行嚴格秘密保管,絕不透過任何途徑向任何人提供,也不會透露給要通訊的另一方,即使他被信任。 基於公開密鑰加密的特性,它還提供數位簽章的功能,使電子文件可以得到如同在紙本文件上親筆簽署的效果。 公開金鑰基礎建設透過信任数字证书认证机构的根证书、及其使用公开密钥加密作數位簽章核發的公開金鑰認證,形成信任鏈架構,已在TLS實作並在万维网的HTTP以HTTPS、在电子邮件的SMTP以STARTTLS引入。 另一方面,信任網絡則採用去中心化的概念,取代了依賴數字證書認證機構的公鑰基礎設施,因為每一張電子證書在信任鏈中最終只由一個根證書授權信任,信任網絡的公鑰則可以累積多個用戶的信任。PGP就是其中一個例子。.
查看 半素数和公开密钥加密
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 半素数和素数
美元
美元(United States Dollar;ISO 4217代码:USD),又稱美圓、美金,(美國)聯邦儲備票據,是美国作為存款債務的官方货币。它的出现是由于《1792年铸币法案》的通过。它同时也作为储备货币在美国以外的国家广泛使用。目前美元的发行是由美国联邦储备系统控制。美元通常可以使用符号“$”来表示,而用来表示美分的标志则是“¢”。国际标准化组织为美元取的ISO 4217标准代号为USD。.
查看 半素数和美元
隨機數發生器
#重定向 随机数生成.
查看 半素数和隨機數發生器
RSA加密演算法
RSA加密演算法是一种非对称加密演算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。 1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被發表。 對极大整数做因数分解的难度決定了RSA算法的可靠性。換言之,對一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法的话,那么用RSA加密的--的可靠性就肯定会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式--。到目前为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的--实际上是不能被--的。 1983年9月12日麻省理工学院在美国为RSA算法申请了专利。这个专利2000年9月21日失效。由于该算法在申请专利前就已经被發表了,在世界上大多数其它地区这个专利权不被承认。.
查看 半素数和RSA加密演算法
殆素数
数论中,一个自然数称为殆素数,当且仅当存在一个绝对常数K,使这个自然数最多有K个素因子。自然数n称为k次殆素数,当且仅当Ω(n).
查看 半素数和殆素数
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 半素数和数学
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
查看 半素数和数论