我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

0

指数 0

0(〇/零)是-1与1之间的整数。0既不是正数也不是负数。0是偶数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数結構中都有著單位元這個很重要的性質。.

目录

  1. 63 关系: -0-1加法逆元偶数印度算术原理古埃及婆羅摩笈多实数对数九章算术平方数代数伊本·拉班信号圈號则天文字單位元几何学前2千年前4世纪因數倍數倒数瞿曇悉達秦九韶符号算筹算术绝对值组合数学瑪雅文明男同性恋电话高斯整數魔鬼计算机科学负倒数负数阈值自然数電壓電子計算機集合论逻辑除以零除法虛數單位李冶正數... 扩展索引 (13 更多) »

  2. 印度发明
  3. 四则运算

-0

-0或负零代表0的相反数,等于0。特定情况下,-0可能具有特殊意义。 在计算机科学中,-0主要用来表达浮点数,以及在某些时候对整数进行有符号数处理。 在普通应用中,-0有可能被用来表示一个可以四舍五入为零的负数,或者是一个从负方向上趋近于零的数。 在统计力学中,特定的系统在反转分布的状态下,可以被认为拥有-0的绝对温度。.

查看 0和-0

-1

在數學中,負一(Negative One)計作-1,是1的加法逆元,即當-1加上1之後就變為零,也是1的相反數。-1是介於-2與0之間的整數,亦是最大的負整數。 負一與歐拉恆等式相關聯,此恆等式表示為e^.

查看 0和-1

加法逆元

對於一個數n,存在一加法逆元(Additive Inverse,又稱相反數),其與n的和為零(加法單位元素)。n的加法逆元表示為-n。 在實數範圍內,兩個相反數相乘必不為正數。又,一個數x的相反數-x,被稱為其加法逆元;相對地,一個數x的倒數1/x,則被稱為其乘法逆元。.

查看 0和加法逆元

偶数

#重定向 奇偶性 (数学).

查看 0和偶数

印度算术原理

《印度算术原理》是十世纪波斯数学家伊本·拉班所著的一本关于印度算术的书,原名Kitab fi usul hisab al-hind。阿拉伯文原书仅存一孤本,现藏土耳其伊斯坦堡 Aya Sophya 图书馆。此书有一本十五世纪由Shalom ben Joseph Anabi 译注的希伯来文本,现藏英国牛津大学Bodleian 图书馆。1965年美国威士康辛大学出版社出版Martin Levey,Marven Petruck 根据阿拉伯文本和希伯来文本翻译的英文译注本,名为Principles of Hindu Reckoning。书中附带31幅根据阿拉伯文原书的显微胶卷影印的书页。 此书还有法文、俄文翻译本.

查看 0和印度算术原理

古埃及

古埃及(مصر القديمة)是位於非洲东北部尼罗河中下游地区的一段时间跨度近3000年的古代文明,开始于公元前32世纪左右时美尼斯统一上下埃及建立第一王朝,终止于公元前343年波斯再次征服埃及,雖然之後古埃及文化還有少量延續,但到公元以後的時代,古埃及已經徹底被異族文明所取代,在連象形文字也被人們遺忘後,古代史前社會留給後人的是宏偉的建築與無數謎團,1798年,拿破仑远征埃及,发现罗塞塔石碑,1822年法国学者商博良解读象形文字成功,埃及学才诞生,古埃及文明才重见天日。直到今日都還不斷被挖掘出來。 古埃及的居民是由北非的土著居民和来自西亚的遊牧民族塞姆人融合形成的多文化圈。約西元前6000年,因為地球軌道的運轉規律性變化、間冰期的高峰過去等客觀氣候因素,北非茂密的草原開始退縮,人們放棄游牧而開始尋求固定的水源以耕作,即尼羅河河谷一帶,公元前4千年后半期,此地逐渐形成国家,至公元前343年为止,共经历前王朝、早王朝、古王国、第一中间期、中王国、第二中间期、新王国、第三中间期、后王朝9个时期31个王朝的统治(参见“古埃及歷史”一节)。其中古埃及在十八王朝时(公元前15世纪)达到鼎盛,南部尼罗河河谷地带的上埃及的領域由現在的蘇丹到埃塞俄比亞,而北部三角洲地区的下埃及除了現在的埃及和部份利比亚以外,其東部邊界越過西奈半島直達迦南平原。杨洪强编著,《古埃及文明-全球史之四》,2005年 在社會制度方面,古埃及有自己的文字系统,完善的行政体系和多神信仰的宗教系统,其统治者称为法老,因此古埃及又称为法老时代或法老埃及江晓原,12宫与28宿:世界历史上的星占学,辽宁教育出版社,2005年5月,45-64 ISBN 7-5382-7184-8。古埃及的国土紧密分布在尼罗河周围的狭长地带,是典型的水力帝国。古埃及跟很多文明一樣,具有保存遺體的喪葬習俗,透過這些木乃伊的研究能一窺當時人們的日常生活,对古埃及的研究在学术界已经形成一门专门的学科,称为“埃及学”。 古埃及文明的产生和发展同尼罗河密不可分,如古希腊历史学家希罗多德所言:“埃及是尼罗河的赠礼。”古埃及时,尼罗河几乎每年都泛滥,淹没农田,但同时也使被淹没的土地成为肥沃的耕地。尼罗河还为古埃及人提供交通的便利,使人们比较容易的来往于河畔的各个城市之间。古埃及文明之所以可以绵延数千年而不间断,另一个重要的原因是其相对与外部世界隔绝的地理环境,古埃及北面和东面分别是地中海和红海,而西面则是沙漠,南面是一系列大瀑布,只有东北部有一个通道通过西奈半岛通往西亚。这样的地理位置,使外族不容易进入埃及,从而保证古埃及文明的穩定延续。相比较起来,周围相对开放的同时代的两河流域文明则经常被不同民族所主宰,兩者對後世所帶來的價值觀也完全不同。.

查看 0和古埃及

婆羅摩笈多

婆羅摩笈多(ब्रह्मगुप्त,IAST: ,),是一位印度数学家和天文学家,出生于印度拉贾斯坦邦宾马尔,一生可能大多数时间都在生地度过。当时上述地区属于哈尔沙帝国。婆羅摩笈多為乌贾因天文台台长,在他任职期间,書写了两部关于数学和天文学的书籍,當中包括於628年寫成的《》。 婆羅摩笈多是第一個提出有關0的計算規則的數學家。婆羅摩笈多和當時許多的印度數學家一樣,會將文字編排成橢圓形的句子,而且最後會有一個環狀排列的詩。由於沒有提出證明,不知其中的數學推導過程。.

查看 0和婆羅摩笈多

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 0和实数

对数

在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数  的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.

查看 0和对数

九章算术

《九章算术》九卷,是現存最早的中國古代数学著作之一,《算经十书》中最重要的一种。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的。在四庫全書中為子部天文演算法算書類。 《九章算术》內容豐富,題材廣泛,共九章,分為二百四十六題二百零二術,不但是漢代重要的數學著作。在中國和世界數學史上佔有重要的地位。作為中國古代數學的系統總結,對中國傳統數學的發展有了深遠的影響。.

查看 0和九章算术

平方数

数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9.

查看 0和平方数

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

查看 0和代数

伊本·拉班

伊本·拉班全名库什亚·伊本·拉班(Kushyar ibn Labban 971年-1029年),是一名中世纪時期的伊朗裔波斯吉蘭人,数学家、天文学家和地理學家。主要著作包括《印度算术原理》(Kitab fi usul hisab al-Hind)和天文学、地理学方面的书籍。伊本·拉班是著名波斯数学家阿嘛德·纳萨为的老师。.

查看 0和伊本·拉班

信号

信号(Signal)可以指:.

查看 0和信号

圈號

圈號指由一個圓圈構成的符號。於台灣、日本,常用來表示「正確」的含義。.

查看 0和圈號

则天文字

则天文字或则天新字,也称武后新字,是中国历史上武周的皇帝武则天所创造的新汉字的总称,在今天看来属于异体字范畴。按照汉字的六种构造条例——六书来划分,这些字都属于象形和会意字。.

查看 0和则天文字

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

查看 0和單位元

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 0和几何学

前2千年

#重定向 前2千纪.

查看 0和前2千年

前4世纪

前400年至前301年的这一段期间被称为前4世纪。.

查看 0和前4世纪

因數

因數是一個常見的數學名詞,又名「--」。.

查看 0和因數

倍數

倍數是一數學名詞,是指一個數和一整數的乘積。換句話說,針對兩個數a和b,若存在一整數n使得b.

查看 0和倍數

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

查看 0和倒数

瞿曇悉達

瞿曇悉達(गौतम सिद्ध)是8世紀中国唐代的印度裔占星術者,瞿昙罗之子。.

查看 0和瞿曇悉達

秦九韶

九韶(),字道古,中国南宋数学家。著作有《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理的历史解法)和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。.

查看 0和秦九韶

符号

在一种认知体系中,符号是指代一定意义的意象,可以是图形图像、文字组合,也可以是声音信号、建筑造型,甚至可以是一种思想文化、一个时事人物。例如“.

查看 0和符号

算筹

算筹或称筭子、算子,是漢字文化圈古代一种十进制计算工具。起源于中國商代的占卜,占卜用现成的小木棍做计算,就是最早的算筹。古代筹、策、算三字都带竹头,表示用竹制成。策为束字加竹头,表示手握一束竖立的算策,作为占卜之用。筹可能代表周易八卦横向排列时用的阴阳竹,算筹横竖二式,可能来源于此。.

查看 0和算筹

算术

算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

查看 0和算术

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

查看 0和绝对值

组合数学

广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.

查看 0和组合数学

瑪雅文明

雅文明,是古代分布於現今墨西哥東南部、瓜地馬拉、宏都拉斯、薩爾瓦多和貝里斯5個國家的叢林文明。雖然處於新石器時代,惟在天文學、數學、農業、藝術及文字等方面都有極高成就。與印加帝國及阿茲特克帝國並列為美洲三大文明(阿茲特克帝國與馬雅文明位於中美洲;印加帝國位於南美洲安地斯山一帶)。 依據中美洲編年,瑪雅歷史分成前古典期、古典期及后古典期。前古典期(公元前2600年-公元250年)也稱形成期,曆法及文字的發明、紀念碑的設立及建築的興建均在此時期;古典期是全盛期(約3世紀-9世紀),此時期文字的使用、紀念碑的設立、建築的興建及藝術的發揮均在此時期達於極盛;後古典期(約10世紀-16世紀),此時期北部興起奇琴伊察及烏斯馬爾等城邦興起,文化也逐漸式微(衰弱)。玛雅从來不像中國、羅馬及埃及等文明擁有一个统一的强大帝国,全盛期的玛雅地区分成数以百计的城邦,然而玛雅各邦在语言、文字、宗教信仰及习俗传统上却属于同一个文化圈,但因為沒有冶金術,農業技術薄弱,無法支撐起龐大的人口,帝國在10世紀之後又逐步回到分散部落的型態。16世紀時,玛雅文化的傳承者阿茲特克帝國被西班牙帝國帶來的瘟疫消滅了大量居民,唯一的美洲文字也被基督徒視為宗教異端而加以抹除,侵略者造成了前所未有的破壞,直到19世紀遺址才被重新發現,今天的馬雅原住民已經不知道過去的文明歷史。.

查看 0和瑪雅文明

男同性恋

#重定向 男同性戀者.

查看 0和男同性恋

电话

电话(和製漢語:,舊譯:德律风,Telephone,Telefono,Telefon)出自τῆλε(,意為“遠”)和φωνή(,意為“聲音”),指一種可以傳送與接收聲音的遠程通信裝置。早在十八世紀欧洲已有「電話」一詞,用來指用線串成的話筒(以線串起杯子)。電話的專利擁有權屬於亚历山大·格拉汉姆·贝尔,早期電話機的原理為:說話聲音為空氣裡的複合振動,可傳輸到固體上,透過電脈衝於導電金屬上傳遞,內含電磁鐵。美国国会2002年6月15日269号决议确认安东尼奥·穆齐为电话的发明人。穆齐于1860年首次向公众展示他的发明,並在纽约的意大利语报纸上发表关于这项发明的介绍,但是因為穆齐家中是貧困,1874年未能延長專利期限。1860年也發明一種基本的電話。貝爾於1876年3月申請電話的專利權。 電話的基本元件包括將聲音轉換為信號的麥克風(發射器)及可以將信號還原為聲音的耳機(接收器)。此外,大部份的電話都有鈴或蜂鳴器,可以發出聲音,提醒有人打電話來,也有撥號盤,若要打電話給其他人時可以輸入電話號碼。在1970年代以前的電話是用旋轉式的撥號,但AT&T在1963年發表雙音多頻的按鈕式撥號盤,後來撥號轉盤也都被按鈕所取代。。電話的麥克風和耳機大部份會整合成,在打電話時有手拿著,麥克風和耳機分別放在口及耳朵的旁邊。發射器可以將音波轉換為信號,藉由電話線路傳送到受話端,受話端將信號轉換為耳機(或是喇叭)中的聲音。 历史上对电话的改进和发明包括:碳粉话筒、人工交换板、拨号盘、自动电话交换机、程控电话交换机、双音多频拨号、语音数字采样等。近年来的新技术包括,ISDN、DSL、網絡電話、模拟移动电话和数字移动电话等。 这一行业通常分为电话设备制造商和电话网络运营商。在历史上,网络运营商通常都拥有全国性的垄断。近年来,随着全球电信市场的开放和整合以及技术的发展,逐渐出现多家运营商在同一市场竞争的局面。例如,贝尔系统,即AT&T的下属公司曾拥有美国电话市场的80%。1984年,由于美国司法部反垄断诉讼,贝尔系统被迫分割成多个独立的地方贝尔公司。 电话的Unicode字符包括:(U+2121)、(U+260E)、(U+260F)、(U+2706)和(U+1F4DE)。 電話最早只是設計作為簡單的語音通訊使用,但許多現代的電話(特別是移動電話)增加許多額外的功能。例如答錄機、傳送接收、拍攝及顯示照片或影片、播放音樂及上網,現在移動電話的趨勢是整合移動電話通訊及大部份相關的運算功能,稱為智能手机。.

查看 0和电话

無是沒有、虛無和空的同義詞,有(存在)的反義詞。在東方哲學中,空可能和有的意義不同,分別屬於佛家和道家的思想。神學與哲學研究無的概念已經有一段時間,例如佛教和道家。數學有時會用無來描述一些狀況。物理學上,没有真正的真空;宇宙誕生带来时间,没有「宇宙誕生之前」的一个概念(或是宇宙誕生前是虛時間)。.

查看 0和無

高斯整數

斯整數是實數和虛數部分都是整數的複數。所有高斯整數組成了一個整域,寫作\mathbf,是個不可以轉成有序環的歐幾里德域。 高斯整數的范数都是非負整數,定義為 \mathbf單位元1, -1, i, -i的範數均為1。.

查看 0和高斯整數

魔鬼

,指拥有超自然力量的邪惡的鬼神、超自然的邪惡力量等邪恶存在。各種文化以及宗教信仰、文学作品、影视作品中都有魔鬼的概念。.

查看 0和魔鬼

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

查看 0和计算机科学

负倒数

#重定向 倒数.

查看 0和负倒数

负数

负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负數也是一個不可數的無限集合。這個集合在数学上通常用粗體R−或\mathbb^-来表示。负数与0统称非正数。.

查看 0和负数

阈值

#重定向 阈.

查看 0和阈值

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

查看 0和自然数

電壓

電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).

查看 0和電壓

電子計算機

--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.

查看 0和電子計算機

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

查看 0和集合论

逻辑

邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.

查看 0和逻辑

除以零

在數學中,被除數的除數(分母)是零將某數除以零,可表達為\frac,a是被除數。在算式中沒有意義,因為沒有數目,以零相乘(假設a\neq 0),由於任何數字乘以零均等於零,因此除以零是一個沒有定義的值。此式是否成立端視其在如何的數學設定下計算。一般實數算術中,此式為無意義。在程序設計中,當遇上正整數除以零程序會中止,正如浮點數會出現NaN值的情況,而在Microsoft Excel及Openoffice或Libreoffice的Calc中,除以零會直接顯示#DIV/0! 。.

查看 0和除以零

除法

数学中,尤其是在基本计算裏,除法可以看成是「乘法的反运算」,也可以理解为「重复的减法」。除法运算的本质就是「把参与运算的除数变为1,得出被除数的值」。 例如:6 \div 3.

查看 0和除法

虛數單位

在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.

查看 0和虛數單位

李冶

李冶(),原名李治,字仁卿,號敬齋,谥号文正,真定欒城(今河北省栾城县)人,中國金代、元代文学家、數學家。他的主要著作为《測圓海鏡》,其中改进了前人的解方程方法,首次系统地阐述了“天元术”(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。李冶与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。.

查看 0和李冶

正數

正数,在数学上是指大于0的实数,如1、3.7,1.5等,与负数相对。和实数一样,正數也是一個不可數的無限集合。這個集合在数学上通常用粗體R+或ℝ+来表示。正数与0统称非负数。.

查看 0和正數

武则天

武曌《全唐文·卷九十六》○改元载初赦文......朕又闻之,人必有名者,所以吐情自纪,尊事天人......朕宜以曌为名。自卦演龙图......(),唐高宗的皇后、武周開國皇帝,當代稱則天順聖皇后,或武后(遺詔退稱皇后),後代通称武则天,并州文水县人,中国历史上唯一因執掌君權因而得到正史追認的女性皇帝。十四歲入宮為唐太宗才人,十二年不得遷。唐高宗时復为昭儀,謀廢得到唐太宗託付于重臣褚遂良的“佳兒佳婦”元后與淑妃,得立为皇后(655年-683年)。一時尊号为天后,与唐高宗天皇李治并称“二圣”。由于唐高宗患风眩病,無力聽政,660年11月开始臨朝,史载“自此内辅国政数十年,威势与帝无异”,683年12月27日-690年10月16日作为唐中宗、唐睿宗的皇太后临朝称制,后利用酷吏集團屢次屠殺唐室諸王大臣以求立威,殺害嫌疑對象遍及子、女、媳、婿、孫、孫女、孫婿、庶子、嫡兄、親姊、親甥女、夫之伯叔姑嫂、堂兄,終於自立为武周皇帝(690年10月16日-705年2月21日在位),在位時間共14年4個月又5天,705年退位以後,成為中國歷史上唯一一位女性太上皇。晚年惑于內寵,不知當立侄或立子,705年元月,被宰相狄仁傑舉薦的後任張柬之與禁衛軍背叛,被迫還位。同年崩于洛陽上陽宮仙居殿。若从660年算起掌权前后45年,从683年算起掌权前后22年,统治掌权时长仅次于清朝慈禧太后。武則天是即位年龄最大(67岁即位)、寿命第三长的皇帝(终年82岁),僅次於清高宗(87歲)和梁武帝(86歲)。 武氏本名无记载,为唐开国勳舊武士彠次女,母亲杨氏為隋朝宗室楊達之女是武士彠繼室,不見禮于正室諸子。祖籍并州文水县(今山西省文水县),十四岁時(貞觀11年)因貌美而入后宫为唐太宗的才人,唐太宗赐号武媚。高宗时为昭仪,后封为皇后,又上尊号为“天后”。高宗崩,中宗即位,武氏为皇太后,临朝称制后改名曌。武氏認為自己好像日、月一樣崇高,凌掛於天空之上。於称帝后上尊号“聖神皇帝”,退位后中宗上尊号“则天大圣皇帝”,武氏遗制去帝号,称“则天大圣皇后”。武氏另有废除的尊号“圣母神皇、圣神皇帝、金轮圣神皇帝、越古金轮圣神皇帝、慈氏越古金轮圣神皇帝、天册金轮圣神皇帝”等。在位期間喜土木作造,尤喜造國字改年號,一年一號。傳說洛陽龍門石窟的奉先寺大佛是模仿其面容而作。.

查看 0和武则天

未定式

在微積分和數學分析的其他分支中,未定式(又稱不定式)是指這樣一類極限,其在按極限的運算規則進行代入後,還未能得到足夠信息去確定極限值。这个术语最初由柯西的学生在19世紀中葉提出。常見的未定式有:\frac00,~\frac,~0\times\infty,~1^\infty,~\infty-\infty,~0^0\text~\infty^0。.

查看 0和未定式

测圆海镜

《测圆海镜》是中国金代数学家李冶的代表作,于公元1248年写成。全书一共十二卷,由一百七十个问题组成。书中对勾股容圆的问题进行了探讨,系统地建立了“天元术”(列一元方程的方法)来解决几何问题。《测圆海镜》被认为是中国现存的第一部天元术著作。 天元术是对具体问题列出方程而后求解的方法。天元术于宋金时期开始发展,到元朝达到一个高峰。在《测圆海镜》问世之前,中国虽有以天人代表未知数用以布列方程和多项式的工作,但早期著作已失,仅存被引用的一些片段。李冶在《测圆海镜》中系统而概括地总结了天元术,用“天元”代替未知数,列出方程,然后求解。.

查看 0和测圆海镜

斐波那契

費波那契,又稱比薩的列奧納多(Leonardo Pisano Bigollo,或稱Leonardo of Pisa, Leonardo Pisano, Leonardo Bonacci, Leonardo Fibonacci,),意大利數學家,西方第一個研究費波那契數,並將現代書寫數和乘數的位值表示法系統引入歐洲。 列奥纳多的父親Guilielmo(威廉),外號Bonacci(意即「好、自然」或「簡單」)。因此列奧納多就得到了外號費波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。威廉是商人,在北非一帶工作(今阿尔及利亚贝贾亚),當時仍是小伙子的列奧納多已經開始協助父親工作。於是他就學會了阿拉伯數字。 有感使用阿拉伯數字比羅馬數字更有效,列奧納多前往地中海一帶向當時著名的阿拉伯數學家學習,約於1200年回國。1202年,27歲的他將其所學寫進《計算之書》(Liber Abaci)。這本書透過在記賬、重量計算、利息、匯率和其他的應用,顯示了新的數字系統的實用價值。這本書大大影響了歐洲人的思想,不過在十三世紀後印制術發明之前,十進制數字並不流行(例子:,Lienhart Holle在Ulm印制)。 列奧納多曾成為熱愛數學和科學的神聖羅馬帝國皇帝腓特烈二世的坐上客。.

查看 0和斐波那契

意大利

意大利共和国(Repubblica Italiana),通稱意大利(Italia),是一個歐洲主权國家,主要由位於南歐的靴型亞平寧半岛及两个地中海岛嶼西西里岛和撒丁岛所组成,國際代碼為IT。意大利北方的阿尔卑斯山地区与法国、瑞士、奥地利以及斯洛文尼亚接壤,其领土包围着两个微型国家——圣马力诺和梵蒂冈,而在瑞士擁有座落於盧加諾湖湖畔的意大利坎波內這個境外領土。全国行政上划分为20个大区(其中5个為自治区)、110个省與8,100个城市。首都為罗马,意大利王国在1870年將首都設置在此,而都灵(1861年-1865年)及-zh-hans:佛罗伦萨;zh-tw:佛羅倫斯;-(1865年-1870年)也曾是意大利王國的首都。根据2014年统计,意大利人口大约为6,079.5萬,領土面積約為301,338平方公里,人口密度约每平方公里201.7人,屬於溫帶氣候。意大利是歐洲人口第5多的國家,人口在世界上排名第23位。意大利因其拥有美丽的自然风光和为数众多的人类文化遗产(世界遺產數目排名全球第一)而被称为美丽的国度(Belpaese)。 現今的意大利地區是以前歐洲民族及文化的搖籃,曾孕育出羅馬文化及伊特拉斯坎文明,而意大利的首都羅馬,幾個世紀以來都是西方世界的政治中心,也曾經是羅馬帝國的首都。當羅馬帝國殞落後,意大利遭受了多次外族入侵,包括倫巴底人、東哥德人等日耳曼民族,之後還有諾曼人等。东罗马帝国曾一度重新占领意大利地区。在14世紀後,意大利轉而成為文藝復興的發源地 ,而文藝復興對歐洲影響深遠,讓歐洲思想前進了一大步。義大利過去分裂為許多王國與城邦,但是最終在1861年完成統一。其巅峰是在第二次世界大戰刚开始之前,義大利變成一個殖民帝國,把勢力範圍延伸到利比亞、厄利垂亞、-zh-hans:意属索马里兰;zh-hk:意屬索馬利蘭;zh-tw:義屬索馬利蘭;-、衣索比亞、阿爾巴尼亞、羅德島與十二群島,而且擁有中國天津的租界。 意大利也在政治、文化、科學、醫療衛生、教育、體育、藝術、時尚、宗教、料理、電影、建築、經濟及音樂等方面具有重要的影響力。米蘭是意大利的經濟及工業中心,根據2009年全球語言監察組織(Global Language Monitor)的資料,它也是世界時尚之都。在2007年造訪意大利的遊客人數位居世界第5位,總共超過4,370萬人次的國際遊客造訪,而羅馬則是歐盟國家中第3多遊客造訪的城市,也被認為世界上最美麗的十大古城之一。威尼斯則被認為是世界上最美麗的城市,《紐約時報》形容它「無疑是世界上最美麗的人造城市」。 意大利共和国是一個議會制民主共和國,是一個已開發國家,世界七大工業國之一,生活質量指數則在世界排名第8名, Economist, 2005。意大利在2014年人類發展指數列表中則名列第26位,並擁有高度人均國內生產總額。根據國內生產總額與購買力平價國內生產總值的數據,意大利分別是世界第8大與第10大經濟體。意大利的政府預算金額則是位居世界第5位。意大利是北大西洋公約和歐盟的創始會員國,也是八大工業國集團、20國集團和歐洲四大經濟體成員之一。意大利也参与經濟合作與發展組織、世界貿易組織、歐洲議會、西歐聯盟及歐洲創新中心(Central European Initiative)。意大利也參加申根協議,也是世界世界國防預算金額第9高的國家且分享北約的核武器。 意大利在歐洲及全球的軍事、文化和外交事務扮演重要的角色,首都羅馬則是世界上對於政治及文化具有重要影響力的城市,世界上許多著名的機構,例如國際農業發展基金會(International Fund for Agricultural Development)、全球在地論壇(Glocal Forum)、世界糧食計劃署及聯合國糧食及農業組織的總部都設在羅馬。意大利也擁有较高的教育指數、勞動力人口及慈善捐助金額。人均預期壽命排名世界第11位。醫療保健系統在2000年被世界衛生組織評比為世界第2。意大利也是一個全球化的國家。意大利的國家品牌價值在2009年名列世界第6位。意大利在藝術、科學和技術上擁有悠久的傳統,且至2017年共有53处世界遺產,是擁有最多世界遺產的西方國家。.

查看 0和意大利

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 0和数学

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

查看 0和数学家

数字电路

数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脈的驱动下,控制部件控制运算部件完成所要执行的动作。通过類比數位轉換器、數位類比轉換器,数字电路可以和模拟电路互相连接。.

查看 0和数字电路

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

查看 0和数论

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

查看 0和整数

普洛尼克数

普洛尼克数(pronic number),也叫矩形数(oblong number),是两个连续非负整数积,即n\times(n+1)。第n个普洛尼克数都是n的三角形数的两倍。开头的几个普洛尼克数是 普洛尼克数也可以表达成n^2+n。对于第n个普洛尼克数也正好等于头n个偶数的和,即(2n- 1)^2与中心六邊形數的差,普洛尼克数不可能是奇数。除了0以外,普洛尼克數也不可能是平方數。 显然,2是唯一的一个素普洛尼克数,也是斐波那契数列中唯二的普洛尼克数(另一個是0)。.

查看 0和普洛尼克数

1

1(一/壹)是0与2之间的自然数,是最小的正奇數.

查看 0和1

1世纪

公元1年1月1日至100年12月31日的这一段期间被称为1世纪。.

查看 0和1世纪

另见

印度发明

四则运算

亦称为 0函数,⓪,零函数。

武则天未定式测圆海镜斐波那契意大利数学数学家数字电路数论整数普洛尼克数11世纪