目录
40 关系: 博弈论,奈望林纳奖,定理,專業,巴黎,代数,微积分学,化學,几何学,图形,空间 (数学),純粹數學,约翰·冯·诺伊曼,约翰·福布斯·纳什,美丽心灵,猜想,物理学,菲尔兹奖,萊昂哈德·歐拉,諾伯特·維納,计算机科学,诺贝尔奖,费马小定理,阿贝尔奖,自然科学,電子計算機,逻辑,歐拉定理,泰勒斯,泛函分析,有限群,流形,数,数学,数学家列表,数学分析,数论,数据,拓扑学,拉格朗日定理。
- 数学科学职业
博弈论
賽局理論(game theory),又譯為对策论,或者--,经济学的一个分支,1944年馮·諾伊曼與奧斯卡·摩根斯特恩合著《博弈論與經濟行為》,標誌著現代系統博弈理論的的初步形成,因此他被稱為「博弈論之父」。博弈論被認為是20世紀經濟學最偉大的成果之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是運籌學的一个重要学科。.
查看 数学家和博弈论
奈望林纳奖
内万林纳獎(Nevanlinna Prize)是頒予在電腦科學的數學方面有主要貢獻者。獎項於1981年由國際數學家大會執行委員會設立,以紀念在前一年過世的芬蘭數學家(Rolf Nevanlinna)。獎項為一--金牌和現金獎,每四年在國際數學家大會頒發。得獎者必須在獲獎那一年不大於40歲 。.
查看 数学家和奈望林纳奖
定理
定理(Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些a是x,某些a是y,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。.
查看 数学家和定理
專業
專業(Profession,Beruf),一種需要特殊教育訓練之後才能從事的職業,他們的主要工作通常是為其他人提供特別的技術顧問與服務。從事這種工作的人,稱為專業人士或專業人員,通常會以它為一種志業。此外,专业还可以指大学学习中的学习方向。.
查看 数学家和專業
巴黎
巴黎(Paris)是法國的首都及最大都市,同時是法蘭西島大區首府,為法國的政治與文化中心,隸屬法蘭西島大區之下的巴黎省(編號第75省;僅轄有1個同名市鎮)。目前的巴黎市轄區範圍大致為舊巴黎城牆內(環城大道內側),依照發展歷史共分成20個區,自從1860年代開始就沒有重大變化。截至2011年為止,巴黎市内人口超過225萬,的人口則逾1,229萬,是歐洲最大的都會區之一。 巴黎在近1,000年的時間内是西方最大的城市,也曾經是世界上最大的城市(16世紀至19世紀期间)。目前是世界上最重要的政治和文化中心之一,在教育、娛樂、時尚、科學、媒體、藝術、金融、政治等方面皆有重大影響力,被認為是世界上最重要的国际大都会之一.
查看 数学家和巴黎
代数
代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.
查看 数学家和代数
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 数学家和微积分学
化學
化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.
查看 数学家和化學
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 数学家和几何学
图形
图形在数学上可以依靠不同的附加结构而形成不同的门类,按附加结构的复杂程度,可以依次分述如下:.
查看 数学家和图形
空间 (数学)
数学上,空间是指一种具有特殊性质及一些额外结构的集合,但不存在單稱為「空間」的數學對象。在初等數學或中學數學中,空間通常指三維空間。數學中常见的空间類型:.
查看 数学家和空间 (数学)
純粹數學
一般而言,純粹數學是一門專門研究數學本身,不以应用为目的的學問(至少可见范围内无法应用),相對於應用數學而言。純粹數學以其严格、抽象和美丽著称。自18世纪以来,純粹數學成为数学研究的一个特定种类,并随着探险、天文学、物理学、工程学等的发展而发展。 純粹數學以數論為其代表。.
查看 数学家和純粹數學
约翰·冯·诺伊曼
约翰·冯·诺伊曼(John von Neumann,,,),原名诺依曼·雅诺士·拉约士(Neumann János Lajos,),出生於匈牙利的美國籍猶太人数学家,现代電子計算機与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及計算機學、量子力學和经济学中都有重大貢獻。 冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《》发布,表现了他生命最后时光的兴趣方向。 “诺依曼”和“诺伊曼”2种同音不同字的德音汉语译名写法都比较常见。另外也有资料采用其英音汉语译名“冯纽曼”。.
查看 数学家和约翰·冯·诺伊曼
约翰·福布斯·纳什
小约翰·--·納殊(John Forbes Nash Jr.,),美國數學家,前麻省理工學院摩爾榮譽講師,主要研究博弈論、微分幾何学和偏微分方程。晚年為普林斯頓大學的資深研究數學家。 1950年,納殊获得美国普林斯頓大學的博士学位,他在仅仅28页的博士论文中提出了一个重要概念,成為博弈论中一項重要突破。這個概念被稱為“納許均衡”,廣泛運用在經濟學、計算機科學、演化生物學、人工智慧、會計學、政策和軍事理論等方面。1994年,他和其他两位博弈論学家约翰·海薩尼和萊因哈德·澤爾騰共同獲得了诺贝尔经济学奖。 他最重要的數學成就是在微分幾何和偏微分方程的領域,特別是黎曼流形等距嵌入到歐氏空間的一系列結果。因為在非線性偏微分方程上的貢獻,他与路易·尼伦伯格共同获得了2015年阿贝尔奖。著名幾何學家米哈伊爾·格羅莫夫評價納殊的工作:「他有巨大的分析(指數學分析)能力與幾何洞察力結合。……他的幾何工作,不論是他的結果、技術、用的想法,都與任何人原先預期的相反。……他在幾何學所做的,從我看來,比起他在經濟學所做的無可比擬地偉大得多,相差很多個數量級。」 在1959年之後,由於出現精神上的症狀,他的研究生涯曾經中斷,在1959年及1961年兩度進入醫院療養,被診斷為思覺失調症。納殊拒絕接受精神藥物治療,在1970年後,症狀逐漸好轉,因此再度回到學術研究工作。他這段時間的經歷,由Sylvia Nasar寫成傳記,並翻拍為電影《美麗境界》,使得他的事蹟廣為人知。.
美丽心灵
是一部美國電影,改編自西爾維雅·娜薩兒撰寫的、描述約翰·納許的同名傳記,約翰·納許是一位患有精神分裂症、卻在博弈论和微分几何学領域潛心研究最终獲得诺贝尔经济学奖的數學家。電影由羅素·高爾、艾德·哈里斯、珍妮佛·康納莉、克里斯托弗·普卢默和保羅·彼特尼主演。電影共獲得了四項第74屆奧斯卡金像獎。 傳記於1998年出版,電影於2001年上映。在2015年5月23日,納許和妻子在一場車禍中雙雙過世。.
查看 数学家和美丽心灵
猜想
數學中的猜想是在根據不完全資訊下的結論及命题,是不知其真假的數學敘述,它可能為真,暫時未被證明或反證 。某些猜想會稱為「假設」,尤其是當它是針對某些問題提出的答案。 像黎曼猜想(目前仍然是猜想)或是費馬最後定理(以往是猜想,一直到1995年才得證)都對數學歷史帶來許多的進展,而且為了證明這些猜想,也發展了新的數學領域。 當猜想被證明後,它便會成為定理。猜想只要未成為定理,數學家都要小心在邏輯結構之中使用這些猜想。猜想主要因為類比推理和偶然發現的巧合而出現。數學家通常會使用不完全歸納法,來測試自己的猜想。例如費馬曾經根據首四個費馬數是素數,便猜想所有費馬數都是素數(此猜想已被推翻)。.
查看 数学家和猜想
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
查看 数学家和物理学
菲尔兹奖
費尔兹奖(Fields Medal),正式名称为国际杰出数学发现奖(The International Medals for Outstanding Discoveries in Mathematics),是一個在国际数学联盟的國際數學家大會上頒發的獎項。每四年评选2-4名有卓越贡献且年龄不超过40岁的数学家。得奖者须在该年元旦前未满四十岁。 奖项以加拿大數學家约翰·查尔斯·菲尔兹的名字命名。菲爾兹筹备设立该奖,并在遗嘱中捐出47,000元给奖项基金。 費尔兹奖被认为是年轻数学家的最高荣誉,和阿贝尔奖均被称为為数学界的諾貝爾獎。奖金有15,000加拿大元,约合13,767美元。而阿贝尔奖的奖金有600万瑞典克朗,约合100万美元,更接近诺贝尔奖。.
查看 数学家和菲尔兹奖
萊昂哈德·歐拉
莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.
查看 数学家和萊昂哈德·歐拉
諾伯特·維納
諾伯特·維納(Norbert Wiener,),生於美國密蘇里州哥倫比亞,美国應用數學家,在電子工程方面貢獻良多。他是隨機過程和噪声信号处理的先驅,又提出「控制論」一詞。.
查看 数学家和諾伯特·維納
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
查看 数学家和计算机科学
诺贝尔奖
诺贝爾奖(Nobelpriset,Nobelprisen),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱於1901年開始頒發的奖项。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项(经济学奖于1968由瑞典中央银行增设,全称“瑞典银行纪念诺贝尔经济科学奖”,通称“诺贝尔经济学奖”)。诺贝尔奖普遍被认为是所颁奖的领域内最重要的奖项。.
查看 数学家和诺贝尔奖
费马小定理
费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么a^p - a 是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同餘。).
查看 数学家和费马小定理
阿贝尔奖
阿贝尔奖(Abelprisen,Abel Prize)是數學的國際獎項,每年颁发一次,獲譽為數學界最高榮譽之一。2001年,为了纪念2002年挪威著名数学家尼尔斯·亨利克·阿贝尔二百周年诞辰,挪威政府宣布将开始向杰出数学家颁发此种奖金。 自2003年起,由挪威自然科学与文学院的五名数学家院士组成的委员会负责宣布获奖人。奖金的数额大致与诺贝尔奖相近。设立此奖的原因也是因为诺贝尔奖没有数学奖项。2001年挪威政府拨款2亿挪威克朗作为启动资金。扩大数学的影响,吸引年轻人从事数学研究是设立阿贝尔奖的主要目的。 2003年3月23日,第一个获奖人名宣布,六月奖金第一次正式颁发。2004年三月第二届获奖人名单宣布,此次有两人分享奖金。 阿貝爾獎最初是索菲斯·李在1899年建議設立,因為他得悉阿爾弗雷德·諾貝爾計劃中的獎項不包括數學獎。可是索菲斯·李不久後逝世,打斷了設立阿貝爾獎的工作。國王奧斯卡二世在1902年嘗試設立阿貝爾獎也不成功,而三年後瑞典-挪威聯盟的解散,使第一次的設立阿貝爾獎的努力以失敗告終。.
查看 数学家和阿贝尔奖
自然科学
自然科学是研究大自然中有机或无机的事物和现象的科学。自然科学包括天文學、物理学、化学、地球科学、生物学等等。.
查看 数学家和自然科学
電子計算機
--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.
查看 数学家和電子計算機
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
查看 数学家和逻辑
歐拉定理
歐拉定理可以指:.
查看 数学家和歐拉定理
泰勒斯
米利都的泰勒斯(Θαλῆς ὁ Μιλήσιος,),常被稱為泰勒斯(Θαλῆς,Thalēs,Thales,),是古希腊时期的哲學家和科學家,亦是希腊最早的前苏格拉底哲学学派之一,米利都学派(亦称爱奥尼亚学派)的创始人,希腊七贤之一,西方思想史上第一个有记载留下名字的思想家,被后人称为“科学和哲学之祖”。他的学生有阿那克西曼德和阿那克西米尼等。.
查看 数学家和泰勒斯
泛函分析
泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.
查看 数学家和泛函分析
有限群
在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.
查看 数学家和有限群
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 数学家和流形
数
數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.
查看 数学家和数
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 数学家和数学
数学家列表
以下按国籍排列方法列出的数学家列表。 中国、法国、德国、意大利、古希腊、英国、美国、俄罗斯、挪威、瑞典、荷兰、瑞士、比利时、匈牙利、丹麦、印度。.
查看 数学家和数学家列表
数学分析
数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.
查看 数学家和数学分析
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
查看 数学家和数论
数据
資料(data),是指未經過處理的原始記錄。一般而言,資料缺乏組織及分類,無法明確的表達事物代表的意義,它可能是一堆的雜誌、一大疊的報紙、數種的開會記錄或是整本病人的病歷紀錄。資料描述事物的符号记录,是可定义为意义的实体,涉及事物的存在形式。是关于事件之一组离散且客观的事实描述,是构成訊息和知识的原始材料。.
查看 数学家和数据
拓扑学
在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.
查看 数学家和拓扑学
拉格朗日定理
拉格朗日定理可以指:.
查看 数学家和拉格朗日定理