我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

二次互反律

指数 二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art.

目录

  1. 37 关系: 卡爾·弗里德里希·高斯卡爾·雅可比同餘奧古斯丁·路易·柯西完备空间希尔伯特符号三次互反律平方二次剩余当且仅当利奥波德·克罗内克單位元勒让德符号算术研究素数約翰·彼得·古斯塔夫·勒熱納·狄利克雷约瑟夫·刘维尔瓦尔特·莫德尔狄利克雷定理萊昂哈德·歐拉複分析高斯引理高斯整數費迪南·艾森斯坦费迪南德·格奥尔格·弗罗贝尼乌斯范数艾森斯坦整数雅可比符号P進數有理数方程施普林格科学+商业媒体数学归纳法数论整环整数整数分解

  2. 二次剩余
  3. 代數數論
  4. 同余
  5. 数论定理

卡爾·弗里德里希·高斯

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.

查看 二次互反律和卡爾·弗里德里希·高斯

卡爾·雅可比

卡爾·古斯塔夫·雅各布·雅可比(Carl Gustav Jacob Jacobi,)是一位普魯士數學家,被廣泛的認為是歷史上最偉大的數學家之一。.

查看 二次互反律和卡爾·雅可比

同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

查看 二次互反律和同餘

奧古斯丁·路易·柯西

奧古斯丁·路易·柯西(法语:Augustin Louis Cauchy,,法语发音),法國數學家。.

查看 二次互反律和奧古斯丁·路易·柯西

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

查看 二次互反律和完备空间

希尔伯特符号

在数学中,如果给定一个局部域 K,比如说实数域或p-进数域,设其去掉0后的乘法群为K×,则希尔伯特符号是一个关于K×的由互反律抽离而来的代数建构。希尔伯特符号得名于数学家大卫·希尔伯特。 具体来说,希尔伯特符号是一个从 K× × K× 射到 的函数 h(\cdot, \cdot) : |rowspan.

查看 二次互反律和希尔伯特符号

三次互反律

在数学中,三次互反律是关于模代数中两个对应的三次方程的可解性之间的关系的结论和定理。.

查看 二次互反律和三次互反律

平方

代数中,一个数的平方是此数与它的本身相乘所得的乘积,一个元素的平方是此元素与它的本身相乘所得的乘积,记作x2。平方也可視為求指數为2的幂的值。若x是正实数,这个乘积相当于一个边长为x的正方形的面积;如果x为虚数,则这个乘积为负数。如果x为非虛數的复数,则这个乘积也是复数。 如果实数y.

查看 二次互反律和平方

二次剩余

在数论中,特别在同余理论裏,一个整数X对另一个整数p的二次剩餘(Quadratic residue)指X的平方X^2除以p得到的余数。 當存在某個X,式子X^2 \equiv d \pmod成立時,稱「d是模p的二次剩餘」 當对任意X,X^2 \equiv d \pmod不成立時,稱「d是模p的二次非剩餘」 研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。.

查看 二次互反律和二次剩余

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 二次互反律和当且仅当

利奥波德·克罗内克

利奥波德·克罗内克(Leopold Kronecker,),德国数学家与逻辑学家,出生于西里西亞利格尼茨(现属波兰的莱格尼察),卒于柏林。他认为算术与数学分析都必须以整数为基础,他曾说:“上帝创造了整数,其余都是人做的工作”(Bell 1986, 477页)。这与数学家格奥尔格·康托尔的观点相互对立。克罗内克是恩斯特·库默尔的学生和终身挚友。 以克罗内克命名的数学理论包括克罗内克δ、克罗内克积等。 Kronecker–Weber定理說明若K / \mathbb是有理數集\mathbb的有限阿貝爾擴張,則K是的一個分圓域的子域。 Kronecker引理說明: 若(x_n)_^\infty是一個實數數列,使得 存在且有限,則對於0及b_n \to \infty則有 Category:19世纪数学家 Category:德国数学家 Category:邏輯學家 Category:猶太科學家 Category:柏林洪堡大學教師 Category:柏林洪堡大學校友 Category:德國猶太人 Category:西里西亞人 分类:绅士科学家.

查看 二次互反律和利奥波德·克罗内克

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

查看 二次互反律和單位元

勒让德符号

勒让德符号,或二次特征,是一个由阿德里安-马里·勒让德在1798年尝试证明二次互反律时引入的函数。这个符号是许多高次剩余符号的原型;其它延伸和推广包括雅可比符号、克罗内克符号、希尔伯特符号,以及阿廷符号。.

查看 二次互反律和勒让德符号

算术研究

《算术研究》(Disquisitiones Arithmeticae)是德国数学家卡尔·弗里德里希·高斯於1798年写成的一本数论教材,在1801年他24岁时首次出版。全书用拉丁文写成。在这本书中高斯整理汇集了费马、欧拉、拉格朗日和勒让德等数学家在数论方面的研究结果,并加入了许多他自己的重要成果。.

查看 二次互反律和算术研究

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 二次互反律和素数

約翰·彼得·古斯塔夫·勒熱納·狄利克雷

約翰·彼得·古斯塔夫·勒熱納·狄利克雷(Johann Peter Gustav Lejeune Dirichlet,勒熱納·狄利克雷是姓,),德國數學家,創立了現代函數的正式定義。其家庭來自比利時的小鎮利克雷(Richelet),此乃其姓氏勒熱納·狄利克雷(le jeune de Richelet.

查看 二次互反律和約翰·彼得·古斯塔夫·勒熱納·狄利克雷

约瑟夫·刘维尔

约瑟夫·刘维尔(Joseph Liouville,)是19世纪的法国数学家,生于加来海峡省的圣奥梅尔。刘维尔一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题、数论中代数数的丢番图逼近问题和超越数有深入研究。刘维尔构造了所谓的“刘维尔数”并证明了其超越性,是第一个证实超越数的存在的人。.

查看 二次互反律和约瑟夫·刘维尔

瓦尔特·莫德尔

奥托·莫里茨·瓦尔特·莫德尔(Otto Moritz Walter Model,),德国陆军元帅。.

查看 二次互反律和瓦尔特·莫德尔

狄利克雷定理

在數論中,狄利克雷定理說明對於任意互質的正整數a,d,有無限多個質數的形式如a+nd,其中n為正整數,即在算術級數a+d,a+2d,a+3d,...

查看 二次互反律和狄利克雷定理

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

查看 二次互反律和萊昂哈德·歐拉

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

查看 二次互反律和複分析

高斯引理

在数论中,高斯引理给出了一个整数是模另一个整数的二次剩余的条件。尽管高斯引理没有实际计算上的意义,但作为二次互反律的证明中的一环,高斯引理有着理论上的重要性。 高斯引理最早出现在高斯1808年发表的二次互反律的第三个证明中,并在第五个证明中再次用到。.

查看 二次互反律和高斯引理

高斯整數

斯整數是實數和虛數部分都是整數的複數。所有高斯整數組成了一個整域,寫作\mathbf,是個不可以轉成有序環的歐幾里德域。 高斯整數的范数都是非負整數,定義為 \mathbf單位元1, -1, i, -i的範數均為1。.

查看 二次互反律和高斯整數

費迪南·艾森斯坦

費迪南·哥德霍爾特·馬克斯·艾森斯坦(Ferdinand Gotthold Max Eisenstein,),德國數學家。.

查看 二次互反律和費迪南·艾森斯坦

费迪南德·格奥尔格·弗罗贝尼乌斯

費迪南德·格奧爾格·弗羅貝尼烏斯(Ferdinand Georg Frobenius,)是德國數學家。他在微分方程理論和群論的成就是他最主要的貢獻。 弗羅貝尼烏斯生於柏林市郊的夏洛滕堡。他畢業於柏林大學。他於1870年完成的畢業論文是關於微分方程的解。指導教授是魏爾施特拉斯。其後幾年他在柏林任教,然後接受蘇黎世Polytechnicum(現為苏黎世联邦理工学院)的聘用。1893年他回到柏林,被選為普魯士科學院院士。.

查看 二次互反律和费迪南德·格奥尔格·弗罗贝尼乌斯

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

查看 二次互反律和范数

艾森斯坦整数

艾森斯坦整数是具有以下形式的复数: 其中a和b是整数,且 是三次单位根。艾森斯坦整数在复平面上形成了一个三角形点阵。高斯整数则形成了一个正方形点阵。.

查看 二次互反律和艾森斯坦整数

雅可比符号

在数论中,雅可比符号是勒让德符号的一种推广,首先由普鲁士数学家卡尔·雅可比在1837年引进。雅可比符号在数论中的各个分支中都有应用,尤其是在计算数论的素性检验、大数分解以及密码学中有重要作用。.

查看 二次互反律和雅可比符号

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 二次互反律和P進數

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 二次互反律和有理数

方程

数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.

查看 二次互反律和方程

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

查看 二次互反律和施普林格科学+商业媒体

数学归纳法

数学归纳法(Mathematical Induction、MI、ID)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。 虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事實上,所有數學證明都是演繹法。.

查看 二次互反律和数学归纳法

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

查看 二次互反律和数论

整环

整环(Integral domain),又譯作整域,是抽象代數中的一个概念,指含乘法单位元的无零因子的交换环。一般假设环中乘法单位元1不等于加法单位元0,以除去平凡的环\。整环是整数环的抽象化,它很好地继承了整数环的整除性质,使得我们能够更好地研究整除理论。 整环也可以定义为理想\是素理想的交换环,或交换的无零因子环。.

查看 二次互反律和整环

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

查看 二次互反律和整数

整数分解

在數學中,整數分解(integer factorization)又稱質因數分解(prime factorization),是將一個正整數寫成幾個因數的乘積。例如,給出45這個數,它可以分解成32 ×5。根據算術基本定理,這樣的分解結果應該是獨一無二的。這個問題在代數學、密碼學、計算複雜性理論和量子計算機等領域中有重要意義。.

查看 二次互反律和整数分解

另见

二次剩余

代數數論

同余

数论定理