我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代数数域

指数 代数数域

代数数域是数学中代数数论的基本概念,数域的一类,有时也被简称为数域,指有理数域\mathbb的有限扩张形成的扩域。任何代数数域都可以视作\mathbb上的有限维向量空间。 对代数数域的研究,或者更一般地说,对有理数域的代数扩张的研究,是代数数论的中心主题。.

目录

  1. 44 关系: 加法逆元卡爾·弗里德里希·高斯单位根向量空间多項式复数 (数学)实数三維空間平方根平方数交集交換律二次域代數數当且仅当分圆域分配律唯一分解整環几何数论理想 (环论)理想数素理想结合律美國數學學會狄利克雷单位定理規矩數费马大定理闵可夫斯基不等式自由模逆元素虛數單位P進數欧拉函数正整數本原元定理有理数有限域施普林格科学+商业媒体数域数学数组

  2. 代數數論
  3. 域論

加法逆元

對於一個數n,存在一加法逆元(Additive Inverse,又稱相反數),其與n的和為零(加法單位元素)。n的加法逆元表示為-n。 在實數範圍內,兩個相反數相乘必不為正數。又,一個數x的相反數-x,被稱為其加法逆元;相對地,一個數x的倒數1/x,則被稱為其乘法逆元。.

查看 代数数域和加法逆元

*在化学上:.

查看 代数数域和基

卡爾·弗里德里希·高斯

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.

查看 代数数域和卡爾·弗里德里希·高斯

单位根

数学上,n \,次單位根是n\,次冪為1的複數。它們位於複平面的单位圆上,構成正''n''邊形的頂點,其中一個頂點是1。.

查看 代数数域和单位根

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 代数数域和向量空间

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

查看 代数数域和多項式

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

查看 代数数域和复数 (数学)

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 代数数域和实数

三維空間

三维空间(也称为三度空間、三次元、3D),日常生活中可指由長、宽、高三个维度所構成的空間,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。 Category:立體幾何 S S S.

查看 代数数域和三維空間

平方根

在數學中,一個數x的平方根y指的是滿足y^2.

查看 代数数域和平方根

平方数

数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9.

查看 代数数域和平方数

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 代数数域和交集

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

查看 代数数域和交換律

二次域

在代數數論中,二次域是在有理數域\mathbb上次數為二的數域。二次域可以唯一地表成\mathbb(\sqrt),其中d無平方數因數。若d>0,稱之為實二次域;否則稱為虛二次域或複二次域。虛實之分在於\mathbb(\sqrt)是否為全實域 二次域的 研究肇源甚早,起初是作為二次型理論的一支。二次域是代數數論的基本對象之一,雖然如此,至今仍有一些未解猜想,如類數問題。.

查看 代数数域和二次域

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

查看 代数数域和代數數

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 代数数域和当且仅当

分圆域

在数论中,分圆域是在有理数域 \mathbb 中添加复数单位根进行扩张而得到的数域。将 n 次单位根 \zeta_n 加入而得到的分圆域称为 n 次分圆域,记作 \mathbb(\zeta_) 。 由于与费马最后定理的联系,分圆域在现代代数和数论的研究中扮演着重要的角色。正是因为库默尔对这些数域上(特别是当 p为素数时)的算术的深入研究,特别是在相应整环上唯一分解定理的失效,使得库默尔引入了理想数的概念,并证明了著名的库默尔同余。.

查看 代数数域和分圆域

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

查看 代数数域和分配律

唯一分解整環

在數學中,唯一分解整环(Unique factorization domain)是一個整環,其中元素都可以表示成有限個不可約元素(或素元)之積,並且表示法在允許重排與相伴(associative)之下唯一,相當於滿足算術基本定理的整環。唯一分解整环通常以英文縮寫UFD表示。.

查看 代数数域和唯一分解整環

幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.

查看 代数数域和冪

几何数论

在数论中,几何数论研究凸体和在n维空间整数点向量问题。几何数论于1910由赫尔曼·闵可夫斯基创立。几何数论和数学其它领域有密切的关系,尤其研究在函数分析和丢番图逼近中,对有理数向无理数逼近问题。.

查看 代数数域和几何数论

环可能指:.

查看 代数数域和环

理想 (环论)

想(Ideal)是一个抽象代数中的概念。.

查看 代数数域和理想 (环论)

理想数

在数论中,理想数是在某个数域的整数环中表示一个理想的代数数。理想数的概念由恩斯特·库默尔首先引进,并导致理查德·戴德金发展出环的理想的概念。一个整环中的理想被称作主理想当且仅当它是由某个元素的所有倍数组成。根据主理想化定理,一个代数数域中的整环中的所有非主理想的理想在数域扩张成为一个希尔伯特类域时都会成为一个主理想。这表示存在一个类域中的整环中的元素 a,其为一个理想数,即使得 a 与类域中的整环中元素相乘得到的倍数与原来数域的交集就是原来的非主理想。.

查看 代数数域和理想数

素理想

在数学中,素理想是环的一个子集,与整数环中的素数共享许多重要的性质。.

查看 代数数域和素理想

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

查看 代数数域和结合律

美國數學學會

美國數學學會(American Mathematical Society,缩写作 AMS)是美國進行數學研究和教育的組織,有不少出版品。前往英國時,受到倫敦數學學會的啟發而於1888年成立AMS。 AMS以TeX為基礎發展了。 AMS出版《數學評論》(Mathematical Reviews),這是數學出版品的評論資料庫。.

查看 代数数域和美國數學學會

狄利克雷单位定理

利克雷单位定理是代数数论两个基本定理之一,是由古斯塔夫·勒热纳的·狄利克雷得出的。它确定了在一个数域OK的代数整数环中单位群的可用一正实数regulator来度量,这正实数记为rank,可反映如何单位群在域OK的“稠密”程度。.

查看 代数数域和狄利克雷单位定理

規矩數

規矩數(又稱可造數)是指可用尺規作圖方式作出的實數。在給定單位長度的情形下,若可以用尺規作圖的方式作出長度為 a 的線段,則 a 就是規矩數。規矩數的「規」和「矩」分別表示圓規及直尺,兩個尺規作圖的重要元素。.

查看 代数数域和規矩數

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

查看 代数数域和费马大定理

闵可夫斯基不等式

在数学中,闵可夫斯基不等式(Minkowski inequality)表明Lp空间是一个赋范向量空间。设 S 是一个度量空间,1 \le p\le \infty, f,g \in L^p(S),那么 f + g \in L^p(S),我们有: 如果 1 ,等号成立当且仅当 \exists k\le 0,f.

查看 代数数域和闵可夫斯基不等式

自由模

在抽象代數中,一個環 R 上的自由模是帶有基底的模。.

查看 代数数域和自由模

逆元素

數學中,逆元素(Inverse element)推廣了加法中的加法逆元和乘法中的倒數。直觀地說,它是一個可以取消另一給定元素運算的元素。.

查看 代数数域和逆元素

虛數單位

在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.

查看 代数数域和虛數單位

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 代数数域和P進數

欧拉函数

在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).

查看 代数数域和欧拉函数

正整數

正整數,在数学中是指大於0的整數。正整數是正数与整数的交集。和整數一样,正整數也是一個可數的無限集合。這個集合在数学上通常用粗體Z+或\mathbb^+来表示。在数论中,正整數也可稱為自然数,即1、2、3……;但在集合论和计算机科学中,自然数则通常是指非负整数,即正整數与0的 集合。.

查看 代数数域和正整數

本原元定理

在数学中,本原元定理精确刻画了什么时候对于一个域扩张E/F,E可以表示为F(\alpha)的形式,即E可以由单个元素生成。.

查看 代数数域和本原元定理

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 代数数域和有理数

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

查看 代数数域和有限域

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

查看 代数数域和施普林格科学+商业媒体

数域

数域是近世代数学中常见的概念,指对加减乘除四则运算封闭的代数系统。通常定义的数域是指复数域\mathbb的子域。“数域”一词有时也被用作代数数域的简称,但两者的定义有细微的差别。.

查看 代数数域和数域

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 代数数域和数学

数组

在計算機科學中,陣列資料結構(array data structure),簡稱数组(Array),是由相同类型的元素(element)的集合所組成的資料結構,分配一块连续的内存来存储。利用元素的索引(index)可以计算出该元素對應的儲存地址。 最簡單的資料結構類型是一維陣列。例如,索引為0到9的32位元整數陣列,可作為在記憶體位址2000,2004,2008,...2036中,儲存10個變量,因此索引為i的元素即在記憶體中的2000+4×i位址。陣列第一個元素的記憶體位址稱為第一位址或基礎位址。 二维数组,对应于數學上的矩陣概念,可表示為二維矩形格。例如: a.

查看 代数数域和数组

另见

代數數論

域論