徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

代數閉域

指数 代數閉域

在數學上,一個域F被稱作代數閉--,若且唯若任何係數属于F且次數大於零的單變數多項式在F裡至少有一個根。.

18 关系: 域 (數學)多項式实数不可约多项式代数基本定理代數數佐恩引理当且仅当因式分解系数线性映射特征向量特徵多項式複數部分分式分解自同态有理数有限域

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

新!!: 代數閉域和域 (數學) · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 代數閉域和多項式 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 代數閉域和实数 · 查看更多 »

不可约多项式

在數學裡,不可約多項式(irreducible polynomial)是指不可被分解成兩個非常數多項式之乘積的非常數多項式。不可約的性質取決於係數所屬於的體或環。例如,多項式在係數1與 -2被認為是整數時是不可約的,而在這些係數被認為是實數時可分解成(x-\sqrt)(x+\sqrt)。亦即,「多項式在整數上不可約,但在實數上不是不可約。」 不是不可約的多項式有時會被稱為可約。不過,「可約」這一詞可能被會用來指其他的概念,須小心使用。 不可約多項式於多項式分解與代數體擴張裡都會自然地出現。 將不可約多項式與質數相比會很有幫助:質數(與具相同大小之對應負數)為不可約的整數。質數具有的許多「不可約」這個概念之一般性質,同樣可適用於不可約多項式之上,如質數或不可約因式的唯一分解。.

新!!: 代數閉域和不可约多项式 · 查看更多 »

代数基本定理

代数基本定理说明,任何一个一元複系数方程式都至少有一个複数根。也就是说,複数域是代数封闭的。 有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。 高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。 同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以上的方程,不存在一般的代数解。.

新!!: 代數閉域和代数基本定理 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

新!!: 代數閉域和代數數 · 查看更多 »

佐恩引理

佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设(P, \le)是一个偏序集,它的一个子集T称为是一个全序子集,如果对于任意的s, t \in T有s \le t或t \le s。而T称为是有上界的,如果P中存在一个元素u,使得对于任意的t \in T,都有t \le u。在上述定义中,并不要求u一定是T中的元素。而一个元素m \in T称为是極大的,如果x \in T且x \ge m,则必然有x.

新!!: 代數閉域和佐恩引理 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 代數閉域和当且仅当 · 查看更多 »

因式分解

因式分解(factorization,factorisation,或factoring),在數學中一般理解為把一個多項式分解為兩個或多個的因式(因式亦為多項式)的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如多項式x^2 -4可被因式分解為\left(x+2 \right) \left(x-2 \right)。.

新!!: 代數閉域和因式分解 · 查看更多 »

系数

在数学中,系数是在某个表达式中作为某个对象的乘法因数的常数。比如说,9x2中的系数是9。 拥有系数的对象可以各种各样,比如说变量、函数、向量或者矩阵。有的时候系数似乎没有对象,比如说堅尼係數,实际上是因为对应的对象过于生僻而没有列出。在某些情况下,系数会被标上上标或下标,以示区分,如下式中: 为了与xn协调,an 是一个带有下标的系数,n.

新!!: 代數閉域和系数 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 代數閉域和线性映射 · 查看更多 »

特征向量

#重定向 特征值和特征向量.

新!!: 代數閉域和特征向量 · 查看更多 »

特徵多項式

在線性代數中,對一個線性自同態(取定基即等價於方陣)可定義其特徵多項式,此多項式包含該自同態的一些重要性質,例如行列式、跡數及特徵值。.

新!!: 代數閉域和特徵多項式 · 查看更多 »

複數

#重定向 复数 (数学).

新!!: 代數閉域和複數 · 查看更多 »

部分分式分解

部分分式分解或部分分式展開,是將有理函數分解成許多次數較低有理函數和的形式,來降低分子或分母多項式的次數。分解後的分式需滿足以下條件:.

新!!: 代數閉域和部分分式分解 · 查看更多 »

自同态

在数学中,自同态是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。 在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。 X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含: |- | align.

新!!: 代數閉域和自同态 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

新!!: 代數閉域和有理数 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 代數閉域和有限域 · 查看更多 »

重定向到这里:

代数封闭代数封闭域代数闭代數封閉域代數閉包代數閉體

传出传入
嘿!我们在Facebook上吧! »