目录
域 (數學)
在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 部分分式分解和多項式
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 部分分式分解和实数
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
查看 部分分式分解和导数
不定积分
在微积分中,一个函数f.
查看 部分分式分解和不定积分
冪
幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.
查看 部分分式分解和冪
因式分解
因式分解(factorization,factorisation,或factoring),在數學中一般理解為把一個多項式分解為兩個或多個的因式(因式亦為多項式)的過程。在這個過後會得出一堆較原式簡單的多項式的積。例如多項式x^2 -4可被因式分解為\left(x+2 \right) \left(x-2 \right)。.
查看 部分分式分解和因式分解
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 部分分式分解和积分
純量
#重定向 标量.
查看 部分分式分解和純量
複數
#重定向 复数 (数学).
查看 部分分式分解和複數
部分分式积分法
部分分式积分法,即通过将原函数拆分为部分分式来简化积分步骤,是计算积分时的一个常用技巧。任何有理函数都可拆分为多个多项式和部分分式的和,每个部分分式中的分子次数小于分母,然后根据积分表及利用其他积分技巧,将每个部分分式积分,就得到原函数的积分。.
有理函數
有理函數是可以表示為以下形式的函數: 有理數式是多項式除法的商,有時稱為代數分數。.
查看 部分分式分解和有理函數
有限域
在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.
查看 部分分式分解和有限域
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
查看 部分分式分解和整数
另见
代数
- 不可约多项式
- 代数
- 分圆多项式
- 初等代數
- 双重根号
- 單項式
- 多項式
- 常数
- 平方
- 數根
- 柯爾獎
- 核 (代数)
- 欧拉函数
- 比
- 秦九韶算法
- 积和式
- 立方和
- 等价类
- 算子
- 系数
- 解析解
- 變數
- 逆元素
- 運算數
- 運算次序
- 遞迴關係式
- 部分分式分解
初等代数
- 一元二次方程
- 一元運算
- 一次方程
- 三次方程
- 不等
- 不等式
- 乘法分配律
- 交換律
- 代數分式
- 代數式
- 传递关系
- 倒数
- 分母有理化
- 分配律
- 初等代數
- 加法單位元
- 加法逆元
- 四次函數
- 四次方程
- 因式分解
- 增失根
- 恒等式
- 数学公式
- 方根
- 方程
- 立方根
- 線性關係
- 结合律
- 部分分式分解
- 配方法
- 韦达定理
亦称为 部分分式,部分分式化。