目录
21 关系: 可加性,中国社会科学院,常数,微分方程,初等数学,函数,函数图形,CNKI,理论物理学,線性函數,線性無關,线性代数,线性映射,非線性,高等数学,高等教育出版社,變數,泛函分析,方程组,数学,数学分析。
- 初等代数
可加性
可加性是指对于某种变换来说,特定的“加法”和该变换的顺序可颠倒而不影响结果,这样一种性质。 例如对于两个实数 x 和 y,我们可以先执行加法 x+y、后把结果乘以二;也可以先各自乘以二然后再相加,两边结果是一样的。那么我们说变换“乘以二”具有可加性。.
查看 線性關係和可加性
中国社会科学院
中国社会科学院(Chinese Academy of Social Sciences,縮寫為CASS)是中华人民共和国在哲学、社会科学领域研究的最高的和最全面的国家级学术机构与综合研究中心。成立于1977年5月,前身是中国科学院哲学社会科学部,後哲学社会科学部行政階級提升等同中國科學院,並在改組後正式成立中国社会科学院。 美国宾夕法尼亚大学智库研究项目(TTCSP)研究编写的《全球智库报告2015》中,中國社會科學院排名全球第31名,為中國排名最高的智庫。.
查看 線性關係和中国社会科学院
常数
常数又稱定數,是指一个数值固定不变的常量,例如圆周率\pi\,、自然对数的底e,与之相反的是變數。 在物理學上,很多經測量得出的數值都被稱為常數。例如萬有引力常數和地表重力加速度等。但有研究表明,部分這類常数并不是恒定不变的,因此就被稱作“不定常数”(inconstant constant)和“不恒定的常数”(not-so-constant constant)。.
查看 線性關係和常数
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
查看 線性關係和微分方程
初等数学
初等数学(Elementary mathematics),简称初数,是指通常在小学或中学阶段所教的数学内容,与高等数学相对。.
查看 線性關係和初等数学
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 線性關係和函数
函数图形
在数学中,函数 f 的图形(或图像)指的是所有有序对(x, f(x))组成的集合。具体而言,如果x为实数,则函数图形在平面直角坐标系上呈现为一条曲线。如果函数自变量x为两个实数组成的有序对(x1, x2),则图形就是所有三重序(x1, x2, f(x1, x2))组成的集合,呈现为曲面(参见三维计算机图形)。 实函数的图形拥有其唯一的图像。而对于一般的函数,其图形形式无法应用,图形的正式定义取决于数学表述的需要,例如泛函分析中的閉圖像定理。 函数图形的概念由二元关系图形推广而来。需要注意的是,尽管一个函数与其图像通常是一一对应的,但二者并不可混淆。两个函数可能拥有相同的图像,却有不同的上域(陪域)。例如,对于下文提到的三次多项式,当其上域为实数时函数即为满射,而若其上域为复数则不然。 通过垂线测试可以判断一条曲线是否为一个函数,而通过水平線測試可以判断函数是否为单射且是否存在反函数。如果反函数存在,则其图像可以通过将原函数图像以直线y.
查看 線性關係和函数图形
CNKI
中国国家知识基础设施(National Knowledge Infrastructure,CNKI、其主要访问平台是中国知网)是在教育部、中共中央宣传部、科技部、国家新闻出版广电总局、国家计委的大力支持下,由清华大学直接领导的一项知识工程。该工程由清华大学和清华同方发起,于1995年正式立项,最初仅仅是发行《中国学术期刊(光盘版)》,并迅速占领中国图书情报市场,尤其是高校图书馆市场。1999年,CNKI实现网络化,中国期刊网开通,该项目由清华大学光盘国家工程研究中心、清华同方光盘股份有限公司与中国学术期刊(光盘版)电子杂志社联合立项。在这之后,CNKI工程不断拓展服务,建立了包括期刊、博硕士论文、会议论文、年鉴、统计数据、图书、标准、专利等资源在内的中国知识资源总库(China Integrated Knowledge Resources Database)。目前,中国知网在北京、北美、日本、韩国、台湾、香港等地设立了10个网络服务中心,用户覆盖各国重要高校、研究机构、政府智库、企业、医院、公共图书馆等。 CNKI依托其主导产品《中国学术期刊全文数据库》,不断集成、整合新的资源,并在主导产品的基础上开发新产品,新产品开发主要是在数字化全文学术资料和数字化软件平台两方面,形成了中国最大的具有垄断地位的集各种全文学术信息于一体的网站——中国知网 。 CNKI于2013年1月被国际DOI基金会(IDF)指定为中国大陆地区第二家DOI代理机构,第一家为中国科技信息研究所。.
查看 線性關係和CNKI
理论物理学
论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.
查看 線性關係和理论物理学
線性函數
在數學裏,線性函數(又称一次函数)在不同的領域中有多於一个用途和含意。.
查看 線性關係和線性函數
線性無關
在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.
查看 線性關係和線性無關
线性代数
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
查看 線性關係和线性代数
线性映射
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.
查看 線性關係和线性映射
非線性
#重定向 非線性系統.
查看 線性關係和非線性
高等数学
等数学是比初等数学更高深的数学。有将中学里较深入的代数、几何以及集合论初步、逻辑初步统称为中等数学的,将其作为小学、初中的初等数学与本科阶段的高等数学之间的过渡。通常认为,高等数学的主要内容包括:极限理论、一元微积分学、多元微积分学、空间解析几何与向量代数、级数理论、常微分方程初步。在高等数学的教材中,以微积分学和级数理论为主体,其他方面的内容为辅,各类课本略有差异。 在中華人民共和國,理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的深一些,课本常称“高等数学”,多数院校使用课本为同济大学数学系所编的《高等数学》;文史科各类专业的学生,学的浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。 高等数学是高等学校理工科本科有关专业学生的一门必修的重要基础课。通过这门课程的学习,使学生获得向量代数与空间解析几何、微积分的基本知识,必要的基础理论和常用的运算方法,并注意培养学生的运算能力和初步的抽象思维、逻辑推理及空间想象能力,从而使学生获得解决实际问题能力的初步训练,为学习后继课程奠定必要的数学基础。.
查看 線性關係和高等数学
高等教育出版社
等教育出版社,簡稱高教社,是一家直属于中华人民共和国教育部的专业教育出版机构,成立于1954年5月,主要出版高等教育、职业教育、成人及社会教育等教育类、专业类、科技类出版物。.
查看 線性關係和高等教育出版社
變數
在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.
查看 線性關係和變數
泛函分析
泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.
查看 線性關係和泛函分析
方程组
方程组(--)又稱--(--),是两个或两个以上含有多个未知数的方程联立得到的集。未知数的值称为方程组的根,求方程组根的过程称为解方程组。一般在方程式的左边加大括号标注。.
查看 線性關係和方程组
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 線性關係和数学
数学分析
数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.
查看 線性關係和数学分析
另见
初等代数
- 一元二次方程
- 一元運算
- 一次方程
- 三次方程
- 不等
- 不等式
- 乘法分配律
- 交換律
- 代數分式
- 代數式
- 传递关系
- 倒数
- 分母有理化
- 分配律
- 初等代數
- 加法單位元
- 加法逆元
- 四次函數
- 四次方程
- 因式分解
- 增失根
- 恒等式
- 数学公式
- 方根
- 方程
- 立方根
- 線性關係
- 结合律
- 部分分式分解
- 配方法
- 韦达定理
亦称为 線性。