目录
加法逆元
對於一個數n,存在一加法逆元(Additive Inverse,又稱相反數),其與n的和為零(加法單位元素)。n的加法逆元表示為-n。 在實數範圍內,兩個相反數相乘必不為正數。又,一個數x的相反數-x,被稱為其加法逆元;相對地,一個數x的倒數1/x,則被稱為其乘法逆元。.
查看 韦达定理和加法逆元
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 韦达定理和多項式
一元二次方程
一元二次方程式是只含有一个未知数,并且未知数的最高次数是二次的多项式方程。 例如,x^2-3x+2.
查看 韦达定理和一元二次方程
弗朗索瓦·韦达
弗朗索瓦·韦达(法语:François Viète;拉丁語:Franciscus Vieta;),16世纪法国最有影响的数学家之一。他的研究工作为近代数学的发展奠定了基础。他也是名律师,是皇家顾问,曾为亨利三世和亨利四世效力。 1540年,韦达生于法国普瓦图地区,今旺代省的丰特奈-勒孔特(Fontenay-le-Comte),早年在普瓦捷学习法律,后任律师。数学是他的业余爱好。他是第一个有意识地、系统地使用符号的人。他不仅用字母表示未知量和未知量的乘幂,而且用来表示一般的系数。他把符号代数称为类的算术,以别于数的算术。他还发现了代数方程根与系数的关系的韦达定理。韦达对三角学也更进一步将已有的三角学系统化。在他对三角法研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述,并且还有平面三角形的正切定理、球面钝角三角形的余弦定理、许多三角恒等式以及差化积定理等。他并有系统地发展了利用全部六种三角函数求解各种平面与球面三角形的方法。1603年12月13日韦达在巴黎病逝。 著有《应用于三角形的数学定律》、《分析方法入门》。 韦达最早明确给出有关圆周率的无穷运算式,而且创造了一套十进分数表示法,促进了记数法的改革。之后,韦达用代数方法解决几何问题的思想由笛卡儿继承,发展成为解析几何。.
查看 韦达定理和弗朗索瓦·韦达
方程
数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.
查看 韦达定理和方程
另见
初等代数
- 一元二次方程
- 一元運算
- 一次方程
- 三次方程
- 不等
- 不等式
- 乘法分配律
- 交換律
- 代數分式
- 代數式
- 传递关系
- 倒数
- 分母有理化
- 分配律
- 初等代數
- 加法單位元
- 加法逆元
- 四次函數
- 四次方程
- 因式分解
- 增失根
- 恒等式
- 数学公式
- 方根
- 方程
- 立方根
- 線性關係
- 结合律
- 部分分式分解
- 配方法
- 韦达定理
亦称为 根和系数的关系。