徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

导数

指数 导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

79 关系: 加速度偏导数协变导数卡爾·雅可比區間反三角函数向量多項式奧古斯丁·路易·柯西定义域实数对数巴拿赫空间不定积分中值定理布鲁克·泰勒三角函数幂级数乔治·贝克莱介值定理伊萨克·巴罗弹性 (经济学)位移微分微分代数微分方程微积分基本定理微积分学分布 (数学分析)分數切線几何学凸函数函数全微分光滑函数皮埃爾·德·費馬积分科林·麦克劳林符号函数算子约瑟夫·拉格朗日线性映射经济学瓦隆無理數物理学莫里斯·克莱因...莱布尼兹公式萊昂哈德·歐拉驻点让·勒朗·达朗贝尔边际运动学范数需求邻域链式法则量子场论自動微分艾萨克·牛顿速度柯西-黎曼方程极限 (数学)李导数梯度江泽涵波尔查诺泛函导数指数函数戈特弗里德·莱布尼茨斯特凡·巴拿赫斜率时间支撑集數值微分拐点 扩展索引 (29 更多) »

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

新!!: 导数和加速度 · 查看更多 »

域(field)可以指:.

新!!: 导数和域 · 查看更多 »

*在化学上:.

新!!: 导数和基 · 查看更多 »

偏导数

在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.

新!!: 导数和偏导数 · 查看更多 »

协变导数

#重定向 协变微商.

新!!: 导数和协变导数 · 查看更多 »

卡爾·雅可比

卡爾·古斯塔夫·雅各布·雅可比(Carl Gustav Jacob Jacobi,)是一位普魯士數學家,被廣泛的認為是歷史上最偉大的數學家之一。.

新!!: 导数和卡爾·雅可比 · 查看更多 »

區間

在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.

新!!: 导数和區間 · 查看更多 »

反三角函数

在数学中,反三角函数是三角函数的反函数。.

新!!: 导数和反三角函数 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 导数和向量 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 导数和多項式 · 查看更多 »

奧古斯丁·路易·柯西

奧古斯丁·路易·柯西(法语:Augustin Louis Cauchy,,法语发音),法國數學家。.

新!!: 导数和奧古斯丁·路易·柯西 · 查看更多 »

定义域

定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).

新!!: 导数和定义域 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 导数和实数 · 查看更多 »

对数

在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数  的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.

新!!: 导数和对数 · 查看更多 »

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

新!!: 导数和巴拿赫空间 · 查看更多 »

不定积分

在微积分中,一个函数f.

新!!: 导数和不定积分 · 查看更多 »

中值定理

在實分析中,中值定理(mean value theorem)描述了連續光滑曲線在兩點之間的光滑性: 中值定理包括微分中值定理和积分中值定理。.

新!!: 导数和中值定理 · 查看更多 »

布鲁克·泰勒

布鲁克·泰勒(Brook Taylor,)出生于英格兰米德薩斯郡,逝世于伦敦,是一名英国数学家,他主要以泰勒公式和泰勒级数出名。.

新!!: 导数和布鲁克·泰勒 · 查看更多 »

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

新!!: 导数和三角函数 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: 导数和幂级数 · 查看更多 »

乔治·贝克莱

乔治·贝克莱(George Berkeley),著名英裔爱尔兰哲學家,同時為圣公会駐愛爾蘭科克郡克洛因鎮的主教,與约翰·洛克和大卫·休谟被認為是英国近代经验主义哲学家中的三大代表人物。他著有《视觉新论》(1709年)和《人类知识原理》(1710年)等作品。美國加州的柏克萊市便是以他的名字命名。耶魯大學也有一個本科寄宿學院是以他命名。.

新!!: 导数和乔治·贝克莱 · 查看更多 »

介值定理

在数学分析中,介值定理(intermediate value theorem)(又稱中間值定理)描述了連續函數在兩點之間的連續性: 直觀地比喻,這代表在區間上可以畫出一個連續曲線,而不讓筆離開紙面。如果這個連續函數是光滑曲線,其任二點間的光滑性可由均值定理來描述。 介值定理首先由伯纳德·波尔查诺在1817年提出和证明,在這個證明中,他附帶證明了波爾查諾-魏爾斯特拉斯定理。.

新!!: 导数和介值定理 · 查看更多 »

伊萨克·巴罗

伊薩克·巴羅(Isaac Barrow,),英國倫敦人,知名數學家。.

新!!: 导数和伊萨克·巴罗 · 查看更多 »

弹性 (经济学)

在经济学中,弹性用于计量一个变量的改变将在多大程度上影响其他变量。这一概念是由阿尔弗莱德·马歇尔提出的。弹性用因变量的变化率与自变量的变化率之比表示。弹性的概念可以应用在所有具有因果关系的变量之间。作为原因的变量通常称作自变量,受其作用发生改变的量称作因变量。例如自变量x和从变量y之间存在关系y.

新!!: 导数和弹性 (经济学) · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

新!!: 导数和位移 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 导数和微分 · 查看更多 »

微分代数

在数学中,微分环、微分域和微分代数是环、域、代数装备一个导子,一个满足莱布尼兹乘积法则的一元函数。微分域的一个自然例子是复数域上的单变元有理函数 C(t),其导子是关于 t 的微分。.

新!!: 导数和微分代数 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 导数和微分方程 · 查看更多 »

微积分基本定理

微积分基本定理描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,表明不定积分是微分的逆运算。這一部分定理的重要之處在於它保證了某連續函數的原函數的存在性。 定理的第二部分,称为微积分第二基本定理或“牛顿-莱布尼茨公式”,表明定积分可以用无穷多个原函数的任意一个来计算。这一部分有很多实际应用,这是因为它大大简化了定积分的计算。 该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。 微积分基本定理表明,一个变量在一段时间之内的无穷小变化之和,等于该变量的净变化。 我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用莱布尼兹记法: 整理,得 根据以上的推理,x的变化──\Delta x,是dx的无穷小变化之和。它也等于导数和时间的无穷小乘积之和。这个无穷的和,就是积分;所以,一个函数求导之后再积分,得到的就是原来的函数。我们可以合理地推断,这个运算反过来也成立,积分之后再求导,得到的也是原来的函数。.

新!!: 导数和微积分基本定理 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

新!!: 导数和微积分学 · 查看更多 »

分布 (数学分析)

数学分析中的分布是广义函数的一种,由法国数学家洛朗·施瓦茨首先于二十世纪五十年代引入。分布推广了普通意义上的函数概念。对于普通意义上不可导甚至不连续的函数,可以具备分布意义上的导数。事实上,任意局部可积的函数都有分布意义上的弱导数。在偏微分方程的研究中,常常使用分布来表示方程的广义解函数,因为很多时候传统意义上的解函数不存在或难以求出。分布理论在物理学和工程学中都十分有用,因为在应用中常会出现解或初始条件是分布的微分方程,例如初始条件可能是一个狄拉克δ分布。 广义函数的概念最早由谢尔盖·索伯列夫在1935年提出。1940年代末,施瓦茨等人开始建立分布理论,首次提出了一个系统清晰的广义函数理论。.

新!!: 导数和分布 (数学分析) · 查看更多 »

分數

分數(fraction)是用分式(分數式)表達成 \frac 的数(a, b \in Z, b\neq 0)。在上式之中,b 稱為分母(Denominator)而 a 稱為分子(Numerator),可視為某件事物平均分成 b 份中佔 a 分,讀作「b 分之 a」。中間的線稱為分線或分数线。有時人們會用 a/b 來表示分數。.

新!!: 导数和分數 · 查看更多 »

切線

#重定向 切线.

新!!: 导数和切線 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 导数和几何学 · 查看更多 »

凸函数

凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及t\in ,有 也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。 如果对于任意的t\in (0,1)有 若對於任意的x,y,z,其中x\le z\le y,都有f(z)\leq \max\, \,\,\, \forall x,y,z \,\,\, x\leq z\leq y,則稱函數f是幾乎凸的。.

新!!: 导数和凸函数 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 导数和函数 · 查看更多 »

全微分

全微分(total derivative)是微积分学的一个概念,指多元函数的全增量\Delta z的线性主部,记为\operatorname dz。例如,对于二元函数z.

新!!: 导数和全微分 · 查看更多 »

光滑函数

光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.

新!!: 导数和光滑函数 · 查看更多 »

皮埃爾·德·費馬

埃爾·德·費馬(姓氏依發音亦作費爾瑪。Pierre de Fermat,,法語發音),法國律師、業餘數學家(也被称为数学大师、业余数学家之王)。他在數學上的成就不低于職業數學家,似乎對數論最有興趣,亦對現代微積分的建立有所貢獻。.

新!!: 导数和皮埃爾·德·費馬 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

新!!: 导数和积分 · 查看更多 »

科林·麦克劳林

科林·麥克勞林(Colin Maclaurin,),蘇格蘭數學家。.

新!!: 导数和科林·麦克劳林 · 查看更多 »

符号函数

號函數(Sign function,簡稱sgn)是一個邏輯函數,用以判斷實數的正負號。為避免和英文讀音相似的正弦函數(sine)混淆,它亦稱為Signum function。其定義為: -1 &: & x 0 \end \right.

新!!: 导数和符号函数 · 查看更多 »

算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

新!!: 导数和算子 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

新!!: 导数和约瑟夫·拉格朗日 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 导数和线性映射 · 查看更多 »

经济学

經濟學是一門对产品和服务的生产、分配以及消费进行研究的社會科學。西方语言中的“经济学”一词源於古希臘的Marshall, Alfred, and Mary Paley Marshall (1879).

新!!: 导数和经济学 · 查看更多 »

瓦隆

隆可能指:.

新!!: 导数和瓦隆 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

新!!: 导数和無理數 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 导数和物理学 · 查看更多 »

莫里斯·克莱因

莫里斯·克莱因(M.克莱因,Morris Kline,),美国数学史学家,数学哲学家,数学教育家。曾执教于纽约大学。 他出版了许多有关数学的著作,其中有《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》(Mathematics: The Loss of Certainty)。.

新!!: 导数和莫里斯·克莱因 · 查看更多 »

莱布尼兹公式

莱布尼兹公式可以指:.

新!!: 导数和莱布尼兹公式 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 导数和萊昂哈德·歐拉 · 查看更多 »

驻点

在數學,特別在微積分,函數在一點处的一階導數為零,该点即函数的驻点(Stationary Point)或稳定点,也就是說若 p 為駐點則 在這一點,函數的輸出值停止增加或減少。 对于一维函数的图像,驻点的切线平行于x轴即水平切线。对于二维函数的图像,驻点的切平面平行于xy平面。 值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某設定區域內,一个函数的极值点也不一定是这个函数的驻点(考慮到邊界條件),例如函数f(x).

新!!: 导数和驻点 · 查看更多 »

让·勒朗·达朗贝尔

让·勒朗·达朗贝尔(,又譯達冷柏;),法国物理学家、数学家和天文学家。他一生在很多领域进行研究,在数学、力学、天文学、哲学、音乐和社会活动方面都有很多建树。著有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言。很多的研究成果记载于《宇宙体系的几个要点研究》中。.

新!!: 导数和让·勒朗·达朗贝尔 · 查看更多 »

边际

边际在经济学中指的是每一单位新增商品带来的效用,这就是生产或消费的边际。 比如,边际成本(marginal cost)指每一单位新生产商品的成本。通常边际成本要低于平均成本(average cost),因为平均成本包括了固定成本(fixed cost)。(参看:规模经济)。边际收益(marginal return)指从每一单位新增商品中得到的新增效用。 简单说边际效用是消费者从每一单位新增商品或服务中得到的新增的效用(满意度或者收益)。一般假设边际效用随着消费量增加而减少,所以某人某天里的第10个炸面包圈得到的满足要少于第一第二个。 其他的边际概念有.

新!!: 导数和边际 · 查看更多 »

运动学

运动学(kinematics)是力学的一门分支,专门描述物体的運動,即物体在空间中的位置随时间的演进而作的改变,完全不考慮作用力或质量等等影响運動的因素。運動学与kinetics、動力學不同。力動學专门研究造成运动或影响运动的各种因素。動力學綜合運動學與力動學在一起,研究力學系統由於力的作用隨著時間演進而造成的運動。 任何一个物体,像是车子、火箭、星球等等,不论其尺寸大小,假若能够忽略其内部的相对运动,假若其内部的每一部份都是朝相同的方向、以相同的速度移动,那麼,可以简易地将此物体视为質點,将此物体的质心的位置当作質點的位置。在运动学裏,这种質點运动,不论是直線运动或是曲線运动,都是最基本的研究对象。 假若不能忽略物体内部的相对运动,则当解析其运动时,必须先将物体理想化为刚体,即一群彼此之间距离不变的質點。涉及刚体的问题比较困难。刚体可能会进行平移运动、旋转运动或两者的综合。更困难的案例是多刚体系统的運動。在這系统内,几个刚体由mechanical linkage连结在一起。運動學分析某連桿裝置的可能運動範圍,或反過來,設計滿足預定運動範圍的連桿裝置。起重機或引擎活塞系統都是簡單的運動系統。起重機是一種open kinematic chain。活塞系統是四連桿組的一部分。.

新!!: 导数和运动学 · 查看更多 »

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

新!!: 导数和范数 · 查看更多 »

需求

求可以指:.

新!!: 导数和需求 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

新!!: 导数和邻域 · 查看更多 »

链式法则

链式法则或鏈鎖定則(英语:chain rule),是求复合函数导数的一个法则。设f 和g 为两个关于x 可导函数,则复合函数 (f \circ g)(x)的导数 (f \circ g)'(x)为:.

新!!: 导数和链式法则 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 导数和量子场论 · 查看更多 »

自動微分

在數學和計算機代數中,自動微分有時稱作演算式微分,是一種可以藉由電腦程式計算一個函數導數的方法。兩種傳統做微分的方法為:.

新!!: 导数和自動微分 · 查看更多 »

艾萨克·牛顿

艾萨克·牛顿爵士,(Sir Isaac Newton,,英語發音)是一位英格兰物理学家、数学家、天文学家、自然哲学家和煉金術士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个世纪--力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。.

新!!: 导数和艾萨克·牛顿 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

新!!: 导数和速度 · 查看更多 »

柯西-黎曼方程

复分析中的柯西-黎曼微分方程是提供了可微函数在开集中為全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。 在一对实值函数u(x,y)和v(x,y)上的柯西-黎曼方程组包括两个方程: 和 通常,u和v取为一个复函数的实部和虚部:f(x + iy).

新!!: 导数和柯西-黎曼方程 · 查看更多 »

极限 (数学)

极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.

新!!: 导数和极限 (数学) · 查看更多 »

李导数

在微分幾何中,李导数(Lie derivative)是一個以索甫斯·李命名的算子,作用在流形上的張量場,向量場或函数,將該張量沿著某個向量場的流做方向導數。因為該作用在座標變換下保持不變,因此,該李導數在一般的流形上都是定義良好的。 所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。 李导数用向量场表示,这些向量场可看作M上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,M上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。.

新!!: 导数和李导数 · 查看更多 »

梯度

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在這點标量场增长最快的方向(當然要比較的話必須固定方向的長度),梯度的絕對值是長度為1的方向中函數最大的增加率,也就是說 |\nabla f|.

新!!: 导数和梯度 · 查看更多 »

江泽涵

江泽涵(),安徽旌德人,数学家,数学教育家,中国科学院院士,中国拓扑学研究的奠基人之一。.

新!!: 导数和江泽涵 · 查看更多 »

波尔查诺

#重定向 博尔扎诺.

新!!: 导数和波尔查诺 · 查看更多 »

泛函导数

在数学和理论物理中,泛函导数是方向导数的推广。后者对一个有限维向量求微分,而前者则对一个连续函数(可视为无穷维向量)求微分。它们都可以认为是简单的一元微积分中导数的扩展。数学里专门研究泛函导数的分支是泛函分析。.

新!!: 导数和泛函导数 · 查看更多 »

指数函数

指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.

新!!: 导数和指数函数 · 查看更多 »

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

新!!: 导数和戈特弗里德·莱布尼茨 · 查看更多 »

斯特凡·巴拿赫

斯特凡·巴拿赫(Stefan Banach,),波兰数学家。.

新!!: 导数和斯特凡·巴拿赫 · 查看更多 »

斜率

斜率用來量度斜坡的斜度。數學上,直線的斜率在任一處皆相等,是直線傾斜程度的量度。透過代數和幾何能計算出直線的斜率;曲線上某點的切線斜率反映此曲線的變數在此點的變化快慢程度,用微積分可計算出曲線中任一點的切線斜率,直线斜率的概念等同土木工程/地理的坡度。.

新!!: 导数和斜率 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 导数和时间 · 查看更多 »

支撑集

在数学中,一个定义在集合X上的实值函数f的支撑集,或简称支集,是指X的一个子集,满足f恰好在这个子集上非0。最常见的情形是,X是一个拓扑空间,比如实数轴等等,而函数f在此拓扑下连续。此时,f的支撑集被定义为这样一个闭集C:f在X \backslash C中为0,且不存在C的真闭子集也满足这个条件,即,C是所有这样的子集中最小的一个。拓扑意义上的支撑集是点集意义下支撑集的闭包。 特别地,在概率论中,一个概率分布是随机变量的所有可能值组成的集合的闭包。.

新!!: 导数和支撑集 · 查看更多 »

數值微分

數值微分是數值方法中的名詞,是用函數的值及其他已知資訊來估計一函數導數的演算法。.

新!!: 导数和數值微分 · 查看更多 »

拐点

拐點(Inflection point)或反曲點是一條可微曲線改變凹凸性的點,或者等價地說,是使切線穿越曲線的點。 決定曲線的拐點有助於理解曲線的外形,這在描繪曲線圖形時特別有用。.

新!!: 导数和拐点 · 查看更多 »

重定向到这里:

Dy/dx可导可微可微分可微性导函数導數求导高阶导数

传出传入
嘿!我们在Facebook上吧! »