目录
主理想環
在數學中,主理想環是使得每個理想均可由單個元素生成的環。 如果一個主理想環同時也是整環,則稱之主理想整環(常簡寫為 PID)。.
查看 理想類群和主理想環
幺半群
在抽象代數此一數學分支中,幺半群(又稱為單群、亞群、具幺半群或四分之三群)是指一個帶有可結合二元運算和單位元的代數結構。么半群在許多的數學分支中都會出現。在幾何學中,幺半群捉取了函數複合的概念;更確切地,此一概念是從範疇論中抽象出來的,之中的幺半群是個帶有一個物件的範疇。幺半群也常被用來當做電腦科學的堅固代數基礎;在此,變換幺半群和語法幺半群被用來描述有限狀態自動機,而跡幺半群和歷史幺半群則是做為進程演算和並行計算的基礎。幺半群的研究中一些較重要的結論有克羅恩-羅德斯定理和星高問題。.
查看 理想類群和幺半群
二次域
在代數數論中,二次域是在有理數域\mathbb上次數為二的數域。二次域可以唯一地表成\mathbb(\sqrt),其中d無平方數因數。若d>0,稱之為實二次域;否則稱為虛二次域或複二次域。虛實之分在於\mathbb(\sqrt)是否為全實域 二次域的 研究肇源甚早,起初是作為二次型理論的一支。二次域是代數數論的基本對象之一,雖然如此,至今仍有一些未解猜想,如類數問題。.
查看 理想類群和二次域
代數整數
在數學裡,代數整數(algebraic integer)是複數中的一类。一个複数α是代数整数当且仅当它是某个個整系數的首一多項式P(x)的根。其中首一(英文:monic)意謂最高冪次項的系數是1。 因此,所有代數整數都是代數數,但並非所有代數數都是代數整數。所有代数整数构成一个环,通常记作\mathbb。 如果P(x)是整係數本原多項式(即系數的最大公因数是1的多项式),但非首一多項式,則P的根都不是代數整數。.
查看 理想類群和代數整數
代數數論
在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.
查看 理想類群和代數數論
循環群
在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.
查看 理想類群和循環群
分式理想
在数学中,特别是交换代数中,分式理想的概念是在对整环的研究中所引入的,并且在戴德金整环的研究中得到丰富。类似于通过给整数引入分母而产生了分数,在整环中,分式理想可认为是为理想引入了的分母。在特定上下文中,为了有所区别,环的普通理想常被强调为整理想。.
查看 理想類群和分式理想
戴德金整環
在環論中,戴德金整環是戴德金為了彌補一般數域中算術基本定理之闕如而引入的概念。在戴德金整環中,任意理想可以唯一地分解成素理想之積。.
查看 理想類群和戴德金整環
另见
代數數論
- P進賦值
- 三次互反律
- 二次互反律
- 二次域
- 代数数域
- 代数数论主题列表
- 代數函數
- 代數數論
- 伽罗瓦扩张
- 伽羅瓦上同調
- 全實域
- 分圆域
- 分式理想
- 判别式
- 可逆元
- 哈瑟原則
- 唯一分解整環
- 局部域
- 希爾伯特第九問題
- 希爾伯特第十二問題
- 弗罗贝尼乌斯自同态
- 德林費爾德模
- 戴德金整環
- 整数
- 整體域
- 正則素數
- 理想 (环论)
- 理想類群
- 範數 (域論)
- 类数公式
- 群上同調
- 賦值向量環
- 黑格纳数
理想
亦称为 類數。