我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三次互反律

指数 三次互反律

在数学中,三次互反律是关于模代数中两个对应的三次方程的可解性之间的关系的结论和定理。.

目录

  1. 11 关系: 单位根复数定理三次方程二次互反律互質單位元範數 (域論)高次剩餘艾森斯坦整数数学

  2. 代數數論
  3. 同余
  4. 数论定理

单位根

数学上,n \,次單位根是n\,次冪為1的複數。它們位於複平面的单位圆上,構成正''n''邊形的頂點,其中一個頂點是1。.

查看 三次互反律和单位根

复数

#重定向 复数 (数学).

查看 三次互反律和复数

定理

定理(Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些a是x,某些a是y,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。.

查看 三次互反律和定理

三次方程

三次方程是未知项總次数最高为3的整式方程,一元三次方程一般形式為 其中\ a, \ b,\ c和\ d (a \neq 0)是屬於一個域的數字,通常這個域為R或C。 本條目只解釋一元三次方程,而且簡稱之為三次方程。.

查看 三次互反律和三次方程

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art.

查看 三次互反律和二次互反律

互質

互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.

查看 三次互反律和互質

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

查看 三次互反律和單位元

範數 (域論)

在域論,範數是一種映射。 設K為域,L是K的有限代數擴張。將\alpha與L的一個元素相乘,是一個線性變換: N_(\alpha)定義為m_\alpha的行列式。 因此可得N_的性質:.

查看 三次互反律和範數 (域論)

高次剩餘

次剩餘意即對於任意的整數X的n次方數X^n(n為正整數)除以任意正整數m所餘的數d,我們稱此d為"模m的n次剩餘",以下討論n是質數的情況(且此質數為奇質數,以下m.

查看 三次互反律和高次剩餘

艾森斯坦整数

艾森斯坦整数是具有以下形式的复数: 其中a和b是整数,且 是三次单位根。艾森斯坦整数在复平面上形成了一个三角形点阵。高斯整数则形成了一个正方形点阵。.

查看 三次互反律和艾森斯坦整数

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 三次互反律和数学

另见

代數數論

同余

数论定理