目录
同餘
数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.
查看 亨泽尔引理和同餘
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 亨泽尔引理和多項式
实变函数论
實分析或實數分析是處理實數及實函數的數學分析。專門實數函數及數列的解析特性,包括實數數列的極限,實函數的微分及積分、連續性,光滑性以及其他相關性質。 實分析常以基礎集合論,函數概念定義等等開始。.
查看 亨泽尔引理和实变函数论
完备空间
完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.
查看 亨泽尔引理和完备空间
交换环
在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.
查看 亨泽尔引理和交换环
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 亨泽尔引理和素数
牛顿法
牛顿法(Newton's method)又称为牛顿-拉弗森方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(y).
查看 亨泽尔引理和牛顿法
P進數
进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.
查看 亨泽尔引理和P進數
泰勒公式
在数学中,泰勒公式(Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。.
查看 亨泽尔引理和泰勒公式
方程
数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.
查看 亨泽尔引理和方程
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 亨泽尔引理和数学
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
查看 亨泽尔引理和整数
另见
交換代數
- GCD環
- 中国剩余定理
- 中山引理
- 主理想
- 主理想整环
- 主理想環
- 二元数
- 交换环
- 交換代數
- 亨泽尔引理
- 優環
- 克鲁尔维数
- 分式環
- 升链条件
- 吴消元法
- 多项式环
- 完備化 (環論)
- 希尔伯特基定理
- 平方差
- 戴德金整環
- 整性
- 整环
- 歐幾里得整環
- 永田環
- 深度 (模論)
- 準素分解
- 準素理想
- 理想 (环论)
- 環的譜
- 科恩-麥考利環
- 葛侖斯坦環
- 諾特模
- 諾特正規化引理
- 賦值環
- 鏈環
同余
- 三次互反律
- 中国剩余定理
- 二次互反律
- 二次剩余
- 亨泽尔引理
- 克罗内克符号
- 勒让德符号
- 卡邁克爾函數
- 卡邁克爾數
- 原根
- 同餘關係
- 吠陀方形
- 威尔逊定理
- 整数模n乘法群
- 模反元素
- 模算數
- 模除
- 欧拉准则
- 欧拉函数
- 欧拉定理 (数论)
- 皮萨诺周期
- 离散对数
- 累进可除数
- 線性同餘方法
- 自守数
- 蒙哥马利算法
- 蔡勒公式
- 费马小定理
- 费马素性检验
- 雅可比符号
- 高斯引理
亦称为 Hensel引理。