徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

交换环

指数 交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

77 关系: 劍橋大學出版社域論埃米·诺特升链条件单位 (代数)可对角化矩阵可微函数同餘同态向量空间多項式多项式环复流形复数子集子模定义良好实数完備化 (環論)层 (数学)主理想主理想環希尔伯特基定理布尔环幺半群交換律二元运算代数几何佐恩引理形式幂级数当且仅当微分几何德语像 (數學)分式環分配律分析唯一分解整環全纯函数矩阵矩陣乘法环论理想 (环论)科恩-麥考利環算术基本定理素数线性代数线性组合環的譜非空集合...补集连续函数范畴的等价阿廷環阿贝尔群闭包 (数学)葛侖斯坦環邻域零因子集合 (数学)选择公理除环陪集University of Chicago Press抽象代数概形歐幾里得整環有理数有限域最小上界流形施普林格科学+商业媒体整环整数扎里斯基拓扑拓扑空间 扩展索引 (27 更多) »

劍橋大學出版社

劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.

新!!: 交换环和劍橋大學出版社 · 查看更多 »

域論

論」(field theory)是抽象代數的分支,研究-zh-hans:域;zh-hant:體-的性質。.

新!!: 交换环和域論 · 查看更多 »

埃米·诺特

埃米·诺特(Emmy Noether,,)是20世纪初一个才华洋溢的德国数学家,研究领域为抽象代数和理论物理学。她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。被帕维尔·亚历山德罗夫,阿尔伯特·爱因斯坦,讓·迪厄多內,赫尔曼·外尔和诺伯特·维纳形容为数学史上最重要的女人。.

新!!: 交换环和埃米·诺特 · 查看更多 »

升链条件

数学上,偏序集P适合升链条件,若任意P的元素的升链 a1 ≤ a2 ≤ ...最终固定,就是說存在正整数n,使得对所有m > n,有am.

新!!: 交换环和升链条件 · 查看更多 »

单位 (代数)

#重定向 可逆元.

新!!: 交换环和单位 (代数) · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 交换环和可对角化矩阵 · 查看更多 »

可微函数

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。 一般来说,若X0是函数f定义域上的一点,且f′(X0)有定义,则称f在X0点可微。这就是说f的图像在(X0, f(X0))点有非垂直切线,且该点不是间断点、尖点。.

新!!: 交换环和可微函数 · 查看更多 »

同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

新!!: 交换环和同餘 · 查看更多 »

同态

抽象代数中,同态是两个代数结构(例如群、环、或者向量空间)之间的保持结构不变的映射。英文的同态(homomorphism)来自希腊语:ὁμός (homos)表示"相同"而μορφή (morphe)表示"形态"。注意相似的词根ὅμοιος (homoios)表示"相似"出现在另一个数学概念同胚的英文(homeomorphism)中。.

新!!: 交换环和同态 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 交换环和向量空间 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 交换环和多項式 · 查看更多 »

多项式环

在抽象代數中,多項式環推廣了初等數學中的多項式。一個環 R 上的多項式環是由係數在 R 中的多項式構成的環,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R 為交換環時,多項式環可以被刻劃為交換 R-代數範疇中的自由對象。.

新!!: 交换环和多项式环 · 查看更多 »

复流形

微分几何中,一个复流形是一个流形,使得每个鄰域在一种连续的方式下看起来象一个複n维空间。更精确的讲,一个复流形有一个坐标图册,其每个坐标图映射到Cn,并且坐标图之间的坐标变换是全纯的。 复流形可以视为微分流形的一种特例。例如,一个1维复流形几何上就是一个曲面,称为黎曼曲面。变换函数必须全纯这个要求意味着和通常的微分流形不同,不同的''C''''k''-微分结构对于不同k没有区别,因为全纯函数解析,一次每个全纯结构也是一个Ck结构,对于任意k ≥1成立。 复流形的理论和实流形的有相当不同的感受,因为複解析函数比光滑函数更为严格。例如,使用惠特尼嵌入定理,每个实流形可以嵌入为Rn的子流形,,但是很少有复流形可以成为Cn的子流形。 Category:复流形 Category:流形上的结构.

新!!: 交换环和复流形 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 交换环和复数 · 查看更多 »

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

新!!: 交换环和子集 · 查看更多 »

子模

设M是左R-模和N是M的子群,则N是一个R中左子模(或更明确叫左R-子模),即如果R中任何r,N中任何n,rn还在N中。相应的如果R中任何r,N中任何n,nr还在N中,叫右R-子模。 一个给定的模M的子模N1,N2,N3,两个二元运算,+,∩,满足格的模律,且子模N1是N2子集,则: (N1 + N3) ∩ N2.

新!!: 交换环和子模 · 查看更多 »

定义良好

在数学裡,术语定义良好(定义良好的 well-defined,名词 well-definition)用于确认用一组基本公理以数学或逻辑的方式定义的某个概念或对象(一个函数,性质,关系,等等)是完全无歧义的,满足它必需满足的那些性质。通常定义是无歧义地表述,明白地满足它们所需的性质。但有时候,使用任意选择的方式来陈述定义是经济的,这时我们便要验证定义与选择无关。另一种情形,所需的性质可能不都是显然的,这时要验证它们。这些问题通常来自函数的定义。 譬如,在群论中,术语“定义良好”经常用于处理陪集时,陪集空间上的函数经常选取一个代表来定义:这时非常重要的是验证无论选取陪集的哪个代表,就像算术运算一样(比如,2加3总是5)我们总得到同样的结果。 f(x_).

新!!: 交换环和定义良好 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 交换环和实数 · 查看更多 »

完備化 (環論)

在交換代數中,可以探討一個交換環 R 本身,或一個 R-模對一理想 I \subset R 的完備性。由於完備環有較容易處理的性質,完備化是研究交換環的基本工具。 幾何上,交換環的完備化對應到一個閉子概形的形式鄰域。.

新!!: 交换环和完備化 (環論) · 查看更多 »

层 (数学)

数学上,在给定拓扑空间X上的一个层(sheaf)(或译束、捆)F对于X的每个开集给出一个集合或者一个更丰富的结构F(U)。这个结构F(U)和把开集限制(restricting)到更小的子集的操作相容,并且可以把小的开集粘起来得到更大的。一个预层(presheaf)和一个层相似,但它可能不可以粘起来。事实上,层使得我们可以用一种细致的方式讨论什么是局部性质,就像应用在函数上的层。.

新!!: 交换环和层 (数学) · 查看更多 »

主理想

在抽象代数里,环R的理想I称为主理想(principal ideal),若 如果R所有的理想都是主理想,则R称为主理想环。 分类:理想 Category:數學小作品.

新!!: 交换环和主理想 · 查看更多 »

主理想環

在數學中,主理想環是使得每個理想均可由單個元素生成的環。 如果一個主理想環同時也是整環,則稱之主理想整環(常簡寫為 PID)。.

新!!: 交换环和主理想環 · 查看更多 »

希尔伯特基定理

希尔伯特基定理是数学、尤其是交换代数中的定理。它声明诺特环上的多项式环也是诺特环。.

新!!: 交换环和希尔伯特基定理 · 查看更多 »

布尔环

在数学中,布尔环R是对于所有R中的x有x^2.

新!!: 交换环和布尔环 · 查看更多 »

幺半群

在抽象代數此一數學分支中,幺半群(又稱為單群、亞群、具幺半群或四分之三群)是指一個帶有可結合二元運算和單位元的代數結構。么半群在許多的數學分支中都會出現。在幾何學中,幺半群捉取了函數複合的概念;更確切地,此一概念是從範疇論中抽象出來的,之中的幺半群是個帶有一個物件的範疇。幺半群也常被用來當做電腦科學的堅固代數基礎;在此,變換幺半群和語法幺半群被用來描述有限狀態自動機,而跡幺半群和歷史幺半群則是做為進程演算和並行計算的基礎。幺半群的研究中一些較重要的結論有克羅恩-羅德斯定理和星高問題。.

新!!: 交换环和幺半群 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 交换环和交換律 · 查看更多 »

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

新!!: 交换环和二元运算 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 交换环和代数几何 · 查看更多 »

佐恩引理

佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设(P, \le)是一个偏序集,它的一个子集T称为是一个全序子集,如果对于任意的s, t \in T有s \le t或t \le s。而T称为是有上界的,如果P中存在一个元素u,使得对于任意的t \in T,都有t \le u。在上述定义中,并不要求u一定是T中的元素。而一个元素m \in T称为是極大的,如果x \in T且x \ge m,则必然有x.

新!!: 交换环和佐恩引理 · 查看更多 »

形式幂级数

形式幂级数是一个数学中的抽象概念,是从幂级数中抽离出来的代数对象。形式幂级数和从多项式中剥离出来的多项式环类似,不过允许(可数)无穷多项因子相加,但不像幂级数一般要求研究是否收敛和是否有确定的取值。形式幂级数在代数和组合理论中有广泛应用。.

新!!: 交换环和形式幂级数 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 交换环和当且仅当 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 交换环和微分几何 · 查看更多 »

德语

德语(德语:Deutsch,)是印欧语系西日耳曼語支的一门语言。以使用國家數量來算是世界排名第六的語言,也是世界大國語言之一以及欧盟内使用最广的母语,德语拥有9000万到9800万使用者。德语标准共同语的形成可以追溯到马丁·路德对拉丁文《圣经》的翻译工作。大多数德语词汇源于印欧语系日耳曼语族的语言,一些词汇来自拉丁语和希腊语,还有部分来自法语和英语。 德语母语使用者的主要分布在德国、奥地利、瑞士北部、列支敦士登和卢森堡。欧洲许多地区(如意大利北部、比利时东部以及波兰等地)和作为原德国殖民地的纳米比亚也有大量的德语使用者,主要为作为当地少数民族的日耳曼人。 德语书写使用拉丁字母。德文字母除去标准的26个拉丁字母外,另有三个带分音符的元音Ä/ä、Ö/ö、Ü/ü以及一个特殊字母ß。.

新!!: 交换环和德语 · 查看更多 »

像 (數學)

在数学中,像是一個跟函数相關的用語。.

新!!: 交换环和像 (數學) · 查看更多 »

分式環

在抽象代數中,分式環或分式域是包含一個整環的最小域,典型的例子是有理數域之於整數環。此外分式環也可以推廣到一般的交換環,此時通常稱作全分式環。 分式環有時也被稱為商域,但此用語易與商環混淆。.

新!!: 交换环和分式環 · 查看更多 »

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

新!!: 交换环和分配律 · 查看更多 »

分析

分析(Analysis)是将复杂的话题或事物逐渐拆分的过程,以此来达到对话题更好的理解。尽管“分析”作为一个正式的概念在近年来才逐步建立起来,这一技巧自亚里士多德(公元前384年至322年)就已经应用在了数学、逻辑学等多个领域。.

新!!: 交换环和分析 · 查看更多 »

唯一分解整環

在數學中,唯一分解整环(Unique factorization domain)是一個整環,其中元素都可以表示成有限個不可約元素(或素元)之積,並且表示法在允許重排與相伴(associative)之下唯一,相當於滿足算術基本定理的整環。唯一分解整环通常以英文縮寫UFD表示。.

新!!: 交换环和唯一分解整環 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 交换环和全纯函数 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 交换环和矩阵 · 查看更多 »

矩陣乘法

這篇文章給出多種矩陣相乘方法的綜述。.

新!!: 交换环和矩陣乘法 · 查看更多 »

环论

抽象代数中,环论(Ring Theory)是針對一種稱為环的代数结构之研究,环類似可交換群,有定義運算「+」,此外又定義另一種運算「·」(此處的「+」和「·」不一定是一般的加法及乘法,但和在整數中定義的加法及乘法有類似性質)。环论研究環的結構、環的(或稱為)、特殊的環(例如群環、除环、泛包絡代數等),也包括一些和环论有關的定理以及其應用,例如同調代數、及。 交换环是指其中運算「·」符合交換律的环,本身比較容易理解。代数几何及代數數論中有許多交换环的例子,也帶動了交换环理論的發展,這部份後來稱為交換代數,是現代數學中的主要領域之一。代数几何、代數數論及交換代數在本質上連結的非常緊密,因此有時很難去區分某特定數學原理屬於哪個領域。例如希尔伯特零点定理是代数几何的基本定理,但是陳述及證明時都是以交換代數的方式進行。而费马大定理問題的形式是以基本的算术方式(屬於交換代數的一部份)呈現,但其證明用到很深的代数几何及代数數論。 是指其中運算「·」不符合交換律的环,會有一些和交换环不同的的特殊特性。非交換環此一數學概念本身也在進展,而近來的也有一些研究將特定的非交換環以幾何的方式表示,例如在(不存在的)非交換空間下的函数環。這種趨勢自1980年代開始發展,也和量子群的出現同時。目前對非交換環已有多一些的認識,尤其是非交換的諾特環。 在「环 (代数)」條目中,有環的定義以及其基本的概念及性質。.

新!!: 交换环和环论 · 查看更多 »

理想 (环论)

想(Ideal)是一个抽象代数中的概念。.

新!!: 交换环和理想 (环论) · 查看更多 »

科恩-麥考利環

在交換代數中,Cohen-Macaulay環是對應到一類代數幾何性質(例如局部等維性)的交換環。 此概念依數學家弗朗西斯·索尔比·麦考利(Francis Sowerby Macaulay)與欧文·索尔·科恩(Irvin S. Cohen) 命名,麦考利(1916年)證明了多項式環的純粹性定理,科恩(1946年)則證明了冪級數環的情形;事實上所有Cohen-Macaulay環都具純粹性。.

新!!: 交换环和科恩-麥考利環 · 查看更多 »

算术基本定理

算术基本定理,又称为正整數的唯一分解定理,即:每个大于1的自然数均可写为質數的积,而且这些素因子按大小排列之后,写法僅有一種方式。例如:6936.

新!!: 交换环和算术基本定理 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 交换环和素数 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 交换环和线性代数 · 查看更多 »

线性组合

線性組合(Linear combination)是線性代數中具有如下形式的表达式。其中v_i为任意类型的项,a_i为标量。這些純量稱為線性組合的係數或權。.

新!!: 交换环和线性组合 · 查看更多 »

環的譜

在抽象代數學和代數幾何學中,一個交換環A的譜是指其素理想全體形成的集合,記作\mathrm(A)。它被賦予扎里斯基拓撲和結構層,從而成爲局部賦環空間。 一個局部賦環空間若同構於一個交換環譜,即稱爲仿射概形。.

新!!: 交换环和環的譜 · 查看更多 »

非空集合

在集合論裏,非空集合是至少含有一个元素的集合。與之相對的是空集。 非空集合的元素个数不为零,而空集不含任何元素。 en:Non-empty set F.

新!!: 交换环和非空集合 · 查看更多 »

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

新!!: 交换环和补集 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

新!!: 交换环和连续函数 · 查看更多 »

范畴的等价

在数学的一个抽象分支范畴论中,范畴的等价(equivalence of categories)是两个范畴间的一个关系,在这种关系之下的范畴是“本质上一样的”。从数学的许多地方都有范畴等价的例子。建立一个等价涉及展示所考虑的数学结构间很强的相似性。在许多情形,这些结构表面或直觉上看并无关联,这样就使这种概念特别有用:它提供了在不同数学结构之间翻译的可能性,本质一语是指在翻译中保持的定理。 如果一个范畴等价于另一个范畴的反范畴,则我们说“范畴的对偶性”,以及这两个范畴对偶等价。 范畴的等价由所涉范畴的一个函子组成,这个函子要求有一个“逆”函子。但与通常代数语境的同构不同,这个函子与它的逆不必是恒等映射,二只要每个对象自然同构与在此符合函子下的像。从而我们可以说这个函子是差一个同构下的逆。这实际上是范畴的同构的概念,其中要求逆函子的严格性质,但这比“等价”概念用得要少。.

新!!: 交换环和范畴的等价 · 查看更多 »

阿廷環

阿廷環是抽象代數中一類滿足降鏈條件的環,以其開創者埃米爾·阿廷命名。.

新!!: 交换环和阿廷環 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 交换环和阿贝尔群 · 查看更多 »

闭包 (数学)

数学中,若对某个集合的成员进行一種运算,生成的仍然是这个集合的成员,则该集合被称为在這个运算下闭合。 例如,实数在减法下闭合,但自然数不行:自然数 3 和 7 的减法 3 − 7 的结果不是自然数。 类似的,一个集合被称为在某些运算的搜集下闭合,如果它在每个运算之下都闭合。 一个集合在某个运算或某些运算的搜集下闭合被称为满足闭包性质。闭包性质经常作为公理,通常叫做闭包公理。现代集合论通常这样定义:运算为在集合间的映射。所以向一个结构增加闭包性質作为公理是多余的,尽管它对于子集是否闭合的问题仍有意义。 当一个集合 S 在某个运算下不闭合的时候,我们通常可以找到包含 S 的最小的闭合集合。这个最小闭合集合被称为 S 的(关于这个运算的)闭包。例如,若把自然数集看作实数集的子集,它在减法下的闭包就是整数集。一个重要的例子是拓扑闭包。闭包的概念推广为伽罗瓦连接,进一步为。 注意集合 S 必须是闭合集合的子集,這樣才能定义闭包算子。在前面的例子中,实数在减法下闭合是重要的,减法不总是在自然数的定义域中有定义的。 闭包这个词的两种用法不应混淆。前者用来提及闭合的性质,而后者提及包含不闭合集合的最小闭合集合。简要的说,一个集合的闭包满足闭包性质。.

新!!: 交换环和闭包 (数学) · 查看更多 »

葛侖斯坦環

在交換代數中,一個葛侖斯坦局部環是一個內射維度有限的交換、局部諾特環。一個葛侖斯坦環(英文:Gorenstein ring)是對每個素理想的局部化皆為葛侖斯坦局部環的交換環。葛侖斯坦環是科恩-麥考利環的特例,它與凝聚對偶性定理(塞爾對偶性定理的推廣)有密切關係。 葛侖斯坦環以數學家丹尼爾·葛侖斯坦命名。.

新!!: 交换环和葛侖斯坦環 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

新!!: 交换环和邻域 · 查看更多 »

零因子

在抽象代数中,一个环的一个非零元素a是一个左零因子,当且仅当存在一个非零元素b,使得ab.

新!!: 交换环和零因子 · 查看更多 »

集合 (数学)

集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

新!!: 交换环和集合 (数学) · 查看更多 »

选择公理

选择公理(Axiom of Choice,縮寫AC)是数学中的一条集合论公理。这条公理声明,对所有非空指标集族 (S_i)_,总存在一个索引族 (x_i)_,对每一个 i \in I,均有 x_i \in S_i。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。 非正式地說,选择公理声明:給定一些盒子(可以是無限個),每个盒子中都含有至少一个小球,那么可以作出这样一种选择,使得可从每个盒子中恰好选出一个小球。在很多情况下这样的选择可不借助选择公理;尤其是在“盒子个数有限”和“存在具體的選擇規則”(當每個盒子都恰好只有一个小球具有某項特征)这两种情况下。再举一个例子,假设有许多(甚至是无限)双鞋子,则我们可以选取每双鞋左边的鞋子构成一个具体的选择。然而,假设有无限双袜子(假设每双袜子都没有可区分的特征),在这种情况下,有效的选择只能通过选择公理得到。 尽管曾具有争议性,选择公理現在已被大多数数学家毫无保留地使用着,例如带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。数学家们使用选择公理的原因是,有许多被普遍接受的数学定理,比如是吉洪诺夫定理,都需要选择公理来证明。現代的集合论学家也研究与选择公理相矛盾的公理,例如。 在一些構造性數學的理論中會避免选择公理的使用,不過也有的將选择公理包括在內。.

新!!: 交换环和选择公理 · 查看更多 »

除环

环(division ring),又譯反對稱體(skew field),是一类特殊的环,在环内除法运算有效。需要特别注意的是,此环内必有非0元素,且环内所有的非0量都有对应的倒数(比如说,对于x来说,存在数a,使得 a·x.

新!!: 交换环和除环 · 查看更多 »

陪集

数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.

新!!: 交换环和陪集 · 查看更多 »

University of Chicago Press

#重定向 芝加哥大學出版社.

新!!: 交换环和University of Chicago Press · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 交换环和抽象代数 · 查看更多 »

概形

概形是代數幾何學中的一個基本概念。.

新!!: 交换环和概形 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

新!!: 交换环和模 · 查看更多 »

歐幾里得整環

在抽象代數中,歐幾里得整環(Euclidean domain)是一種能作輾轉相除法的整環。凡歐幾里得整環必為主理想環。.

新!!: 交换环和歐幾里得整環 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

新!!: 交换环和有理数 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 交换环和有限域 · 查看更多 »

最小上界

在数学中,最小上界(supremum,亦称上确界,记为sup E)是序理论的重要概念,在格论和数学分析等领域有广泛应用。.

新!!: 交换环和最小上界 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 交换环和流形 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 交换环和施普林格科学+商业媒体 · 查看更多 »

整环

整环(Integral domain),又譯作整域,是抽象代數中的一个概念,指含乘法单位元的无零因子的交换环。一般假设环中乘法单位元1不等于加法单位元0,以除去平凡的环\。整环是整数环的抽象化,它很好地继承了整数环的整除性质,使得我们能够更好地研究整除理论。 整环也可以定义为理想\是素理想的交换环,或交换的无零因子环。.

新!!: 交换环和整环 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 交换环和整数 · 查看更多 »

扎里斯基拓扑

在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

新!!: 交换环和扎里斯基拓扑 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 交换环和拓扑空间 · 查看更多 »

重定向到这里:

可交换环可交換環

传出传入
嘿!我们在Facebook上吧! »