徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

层 (数学)

指数 层 (数学)

数学上,在给定拓扑空间X上的一个层(sheaf)(或译束、捆)F对于X的每个开集给出一个集合或者一个更丰富的结构F(U)。这个结构F(U)和把开集限制(restricting)到更小的子集的操作相容,并且可以把小的开集粘起来得到更大的。一个预层(presheaf)和一个层相似,但它可能不可以粘起来。事实上,层使得我们可以用一种细致的方式讨论什么是局部性质,就像应用在函数上的层。.

59 关系: 偏微分方程可表示函子同胚向量空间堪薩斯州奥斯卡·扎里斯基奇点安德烈·韦伊安德雷·柯爾莫哥洛夫不动点幂级数交换图表交换环代数几何代数拓扑开集佐藤幹夫微分几何德拉姆上同调分支哈斯勒·惠特尼函子函子範疇光滑函数环同态离散空间纤维丛直觉主义逻辑芽 (数学)隆起函数解析延拓解析函数譜序列让·勒雷讓-皮埃爾·塞爾诺曼·斯廷罗德賦環空間费利克斯·豪斯多夫超函数连续函数范畴范畴的等价范畴论阿贝尔群集合极限 (范畴论)概形正合序列戈特弗里德·莱布尼茨战俘...昂利·嘉当流形支撑集数学数学分析扎里斯基拓扑拓扑拓扑空间态射 扩展索引 (9 更多) »

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

新!!: 层 (数学)和偏微分方程 · 查看更多 »

可表示函子

#重定向 可表函子.

新!!: 层 (数学)和可表示函子 · 查看更多 »

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

新!!: 层 (数学)和同胚 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 层 (数学)和向量空间 · 查看更多 »

堪薩斯州

堪薩斯州(State of Kansas),簡稱堪州,是美國中部的一個州,位於美國本土的正中心,州名來自印地安蘇族的語言,代表了“南風之人”(People of the south wind)。郵政編號是KS。該州是首个賦予非裔美國人選舉權的州。.

新!!: 层 (数学)和堪薩斯州 · 查看更多 »

奥斯卡·扎里斯基

奥斯卡·扎里斯基(英文:Oscar Zariski,原名Ascher Zaritsky,)是犹太裔美国籍数学家,出生于沙俄科布林(英文Kobrin,俄文Ко́брын,今属白俄罗斯),任美国科学院院士,研究领域有代数几何的现代方法。1981年扎里斯基获得沃尔夫数学奖。.

新!!: 层 (数学)和奥斯卡·扎里斯基 · 查看更多 »

奇点

奇異點.

新!!: 层 (数学)和奇点 · 查看更多 »

安德烈·韦伊

安德烈·韦伊(André Weil,),20世紀数学家,布尔巴基小组创办者之一。他是哲学家西蒙娜·韦伊的兄长。.

新!!: 层 (数学)和安德烈·韦伊 · 查看更多 »

安德雷·柯爾莫哥洛夫

安德雷·尼古拉耶維奇·柯爾莫哥洛夫(俄语:Андре́й Никола́евич Колмого́ров,英语:Andrey Nikolaevich Kolmogorov,),俄国數學家,主要研究概率論、算法信息論、拓撲學、直觉主义逻辑、紊流、经典力学和計算複雜性理論,最為人所道的是對概率論公理化所作出的貢獻。他曾說:"概率論作為數學學科,可以而且應該從公理開始建設,和幾何、代數的路一樣"。.

新!!: 层 (数学)和安德雷·柯爾莫哥洛夫 · 查看更多 »

不动点

在数学中,函数的不动点或定点是指被这个函数映射到其自身一个点。例如,定义在实数上的函数f, 则2是函数f的一个不动点,因为f(2).

新!!: 层 (数学)和不动点 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: 层 (数学)和幂级数 · 查看更多 »

交换图表

在数学领域,尤其是范畴论中,通常使用以对象为顶点、态射为边的交换图表来直观的表达一些性质,尤其是泛性质。 在图表中,复合连接任意两个对象的不同路径上的态射,所得的结果均相等,则称此图表可交换。同时,按照惯例,实线通常表示任意给定的态射,虚线则表示存在或唯一存在的态射。.

新!!: 层 (数学)和交换图表 · 查看更多 »

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

新!!: 层 (数学)和交换环 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 层 (数学)和代数几何 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 层 (数学)和代数拓扑 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: 层 (数学)和开集 · 查看更多 »

佐藤幹夫

佐藤幹夫(日语:佐藤 幹夫,さとう みきお Satō Mikio,)是一个日本数学家,他自称其工作为“代数分析”。佐藤毕业于东京大学,随后在朝永振一郎指导下做物理学研究生。从1970年起,他在京都大学数学科学研究所任教授。 他以在多个领域开创性工作而著名,比如准齐性向量空间和伯恩斯坦-佐藤多项式,特别是他的超函数理论。这最初以分布理论的推广而出现;随后与格罗滕迪克的局部上同调理论联系起来,后者具有独立的起源,用层理论的语言表述。更远的联系到微函数,关注线性偏微分方程的“微局部”,傅立叶理论(比如“波前”),最终与当前D-模理论的发展相通。其中一部分是调和系统的现代理论:PDE 超定(over-determined)到具有无穷维解空间的程度。 他在使用了无穷维格拉斯曼流形的非线性孤子理论中亦有基本贡献。在数论中他因L-函数的而闻名。 他于1993年成为美国科学院院士。1997年获得肖克奖,2003年获得沃尔夫奖。.

新!!: 层 (数学)和佐藤幹夫 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 层 (数学)和微分几何 · 查看更多 »

德拉姆上同调

数学上,德拉姆上同调(de Rham cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。.

新!!: 层 (数学)和德拉姆上同调 · 查看更多 »

分支

分支可以指:.

新!!: 层 (数学)和分支 · 查看更多 »

哈斯勒·惠特尼

哈斯勒·惠特尼(Hassler Whitney,),美國數學家,專長為微分幾何,早年研究圖論。 1982年沃爾夫數學獎得主。 Whitney Whitney Category:沃尔夫数学奖得主 Category:美国国家科学奖获奖者 Category:普林斯顿高等研究院教职员.

新!!: 层 (数学)和哈斯勒·惠特尼 · 查看更多 »

函子

在範疇論中,函子是範疇間的一類映射。函子也可以解釋為小範疇範疇內的態射。 函子首先現身於代數拓撲學,其中拓撲空間的連續映射給出相應的代數对象(如基本群、同調群或上同調群)的代數同態。在當代數學中,函子被用來描述各種範疇間的關係。「函子」(英文:Functor)一詞借自哲學家魯道夫·卡爾納普的用語。卡爾納普使用「函子」這一詞和函數之間的相關來類比謂詞和性質之間的相關。對卡爾納普而言,不同於當代範疇論的用法,函子是個語言學的詞彙。對範疇論者來說,函子則是個特別類型的函數。.

新!!: 层 (数学)和函子 · 查看更多 »

函子範疇

在範疇論中,兩個範疇間的函子具有範疇結構,其中的對象是函子,而態射則為自然變換。函子範疇的重要在於:.

新!!: 层 (数学)和函子範疇 · 查看更多 »

光滑函数

光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.

新!!: 层 (数学)和光滑函数 · 查看更多 »

环同态

在环论或抽象代数中,环同态是指两个环R與S之间的映射f保持两个环的加法与乘法运算。 更加精确地,如果R和S是环,则环同态是一个函数f: R → S,使得:.

新!!: 层 (数学)和环同态 · 查看更多 »

离散空间

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。.

新!!: 层 (数学)和离散空间 · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 层 (数学)和纤维丛 · 查看更多 »

直觉主义逻辑

觉主义逻辑或构造性逻辑是最初由阿蘭德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。.

新!!: 层 (数学)和直觉主义逻辑 · 查看更多 »

芽 (数学)

数学上,一个芽(germ),或称芽胚,是从一个拓扑空间到另一个的连续函数的一个等价类(例如从实直线到自身),其中定义域中的一个点x0被特别选出。两个函数f和g是等价的,当且仅当存在一个x0的开邻域U,使得对所有x ∈ U,等式f(x).

新!!: 层 (数学)和芽 (数学) · 查看更多 »

隆起函数

数学中,一个欧几里得空间^n上的隆起函数f: ^n \to 是一个仅在某“一小块区域”上取值不为零的光滑函数。它在^n绝大部分区域取值都是0,仅仅在某个紧区域上有非零值。^n所有的冲击函数的构成一个函数空间,记作C^\infty_0(^n)或C^\infty_c(^n)。在适当拓扑结构中,它的对偶空间是分布空间(见分布理论)。.

新!!: 层 (数学)和隆起函数 · 查看更多 »

解析延拓

解析延拓是數學上將解析函數從較小定義域拓展到更大定義域的方法。透過此方法,一些原先發散的級數在新的定義域可具有迥異而有限的值。其中最知名的例子為Γ函数與黎曼ζ函數。.

新!!: 层 (数学)和解析延拓 · 查看更多 »

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

新!!: 层 (数学)和解析函数 · 查看更多 »

譜序列

在同調代數中,譜序列是一種藉著逐步逼近以計算同調或上同調群的技術,由讓·勒雷在1946年首創。其應用見諸代數拓撲、群上同調與同倫理論。.

新!!: 层 (数学)和譜序列 · 查看更多 »

让·勒雷

让·勒雷(Jean Leray,),法国数学家,工作领域为偏微分方程与代数拓扑。.

新!!: 层 (数学)和让·勒雷 · 查看更多 »

讓-皮埃爾·塞爾

讓-皮埃爾·塞爾(Jean-Pierre Serre,),法國數學家,主要貢獻的領域是拓撲學、代數幾何與數論。他曾獲頒許多數學獎項,包括1954年的費爾茲獎與2003年的阿貝爾獎。.

新!!: 层 (数学)和讓-皮埃爾·塞爾 · 查看更多 »

诺曼·斯廷罗德

诺曼·厄尔·斯廷罗德(Norman Earl Steenrod,)是一个著名的拓扑学家,他以在代数拓扑领域的贡献而为人所熟知。.

新!!: 层 (数学)和诺曼·斯廷罗德 · 查看更多 »

賦環空間

賦環空間 (ringed space) 在數學上係指一個拓撲空間配上一個交換環層,其中特別重要的一類是局部賦環空間。此概念在現代的代數幾何學佔重要角色。.

新!!: 层 (数学)和賦環空間 · 查看更多 »

费利克斯·豪斯多夫

費利克斯·豪斯多夫(Felix Hausdorff, ),德國數學家。他是拓撲學的創始人之一,並且對集合論和泛函分析都貢獻不少。他定義和研究偏序集、豪斯多夫空間和豪斯多夫維,證明豪斯多夫極大定理(Hausdorff maximality theorem)。他也以筆名Paul Mongré出版哲學和文學作品。 豪斯多夫生於布雷斯勞,在萊比錫學習數學,並在那裡任教,直至1910年獲聘往波昂任數學教授。納粹當權後,他想縱然自己是猶太人,但他是受敬重的大學教授,應可免於迫害。但他的抽象數學研究,竟然被批評為屬「猶太人」的,沒用而且「非德國」,令他在1935年失去教席。1942年,當他知悉終於避不過要被送往集中營,他與妻子和妻子的一名姊妹服毒自盡。 Category:德國自殺者 Category:20世紀數學家 Category:19世紀數學家 Category:德国数学家 Category:猶太科學家 Category:格賴夫斯瓦爾德大學教師 Category:波恩大學教師 Category:萊比錫大學教師 Category:萊比錫大學校友 Category:德國猶太人 Category:西里西亞人.

新!!: 层 (数学)和费利克斯·豪斯多夫 · 查看更多 »

超函数

超函数(hyperfunction)是一全纯函数从一处边界上向另一全纯函数的“跳跃”,可以看作分布的推广。超函数由佐藤幹夫于1958年提出。 实轴上的超函数可以看成是上半平面上的全纯函数与下半平面的全纯函数之间的“差异”。因而超函数可以用(f,g)对来定义,其中f是上半平面的一个全纯函数,g则是下半平面的一个全纯函数。 当用另一全纯函数分别加到f与g上时,f与g间的“差异”并不受影响。因而,令h是复平面上的一全纯函数,超函数(f,g)和(f+h,g+h)是等价的。.

新!!: 层 (数学)和超函数 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

新!!: 层 (数学)和连续函数 · 查看更多 »

范畴

----或--疇可以指:.

新!!: 层 (数学)和范畴 · 查看更多 »

范畴的等价

在数学的一个抽象分支范畴论中,范畴的等价(equivalence of categories)是两个范畴间的一个关系,在这种关系之下的范畴是“本质上一样的”。从数学的许多地方都有范畴等价的例子。建立一个等价涉及展示所考虑的数学结构间很强的相似性。在许多情形,这些结构表面或直觉上看并无关联,这样就使这种概念特别有用:它提供了在不同数学结构之间翻译的可能性,本质一语是指在翻译中保持的定理。 如果一个范畴等价于另一个范畴的反范畴,则我们说“范畴的对偶性”,以及这两个范畴对偶等价。 范畴的等价由所涉范畴的一个函子组成,这个函子要求有一个“逆”函子。但与通常代数语境的同构不同,这个函子与它的逆不必是恒等映射,二只要每个对象自然同构与在此符合函子下的像。从而我们可以说这个函子是差一个同构下的逆。这实际上是范畴的同构的概念,其中要求逆函子的严格性质,但这比“等价”概念用得要少。.

新!!: 层 (数学)和范畴的等价 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

新!!: 层 (数学)和范畴论 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 层 (数学)和阿贝尔群 · 查看更多 »

集合

集合可以指:.

新!!: 层 (数学)和集合 · 查看更多 »

极限 (范畴论)

在數學裡的範疇論中,極限的概念融貫了多種構造,包括和、積等等;範疇論中許多泛性質也可從極限來理解。 極限分為極限與餘極限(又稱上極限),彼此的定義相對偶。在不同場合的別名及英譯如下表: 本條目用語取歸納極限與射影極限。.

新!!: 层 (数学)和极限 (范畴论) · 查看更多 »

概形

概形是代數幾何學中的一個基本概念。.

新!!: 层 (数学)和概形 · 查看更多 »

正合序列

在數學裡,尤其是在群論、環與模理論、同調代數及微分幾何等數學領域中,正合序列(或釋作正合列或恰當序列)是指一個由對象及其間的態射所組成的序列,該序列中的每一個態射的像都恰好是其下一個態射的核。正合序列可以為有限序列或無限序列。 正合序列於同調代數中居於核心地位,其中特別重要的一類是短正合序列。.

新!!: 层 (数学)和正合序列 · 查看更多 »

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

新!!: 层 (数学)和戈特弗里德·莱布尼茨 · 查看更多 »

战俘

战俘(英语:prisoner of war,缩写为POW),或稱俘虜,與人質的性質不同,是指在战争各方中,敌对方被另外一方活捉,但并未处死的,用以作为战争交换条件的人。根据1949年8月12日簽訂的《關於戰俘待遇之日內瓦公約》(又稱《日内瓦第三公约》)规定,各国不得虐待战俘,但有時軍方希望從戰俘口中得到最新的戰況,或敵營的下落,因此對戰俘施以重刑,甚至為減少糧食的消耗,而殺害戰俘,也常有因為人力不足,待與較好的軍醫戰俘可能被派往醫院長時間勞動,身強體壯的則被派往礦場、農田當作苦力的情況;通常只有战场上才会出现战俘一词,在后方抓到的应被称为间谍或特务,要依法律进行处罚。.

新!!: 层 (数学)和战俘 · 查看更多 »

昂利·嘉当

昂利·嘉当(Henri Cartan,),法国数学家,数学家埃利·嘉当之子,曾荣获沃尔夫奖。.

新!!: 层 (数学)和昂利·嘉当 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 层 (数学)和流形 · 查看更多 »

支撑集

在数学中,一个定义在集合X上的实值函数f的支撑集,或简称支集,是指X的一个子集,满足f恰好在这个子集上非0。最常见的情形是,X是一个拓扑空间,比如实数轴等等,而函数f在此拓扑下连续。此时,f的支撑集被定义为这样一个闭集C:f在X \backslash C中为0,且不存在C的真闭子集也满足这个条件,即,C是所有这样的子集中最小的一个。拓扑意义上的支撑集是点集意义下支撑集的闭包。 特别地,在概率论中,一个概率分布是随机变量的所有可能值组成的集合的闭包。.

新!!: 层 (数学)和支撑集 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 层 (数学)和数学 · 查看更多 »

数学分析

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.

新!!: 层 (数学)和数学分析 · 查看更多 »

扎里斯基拓扑

在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

新!!: 层 (数学)和扎里斯基拓扑 · 查看更多 »

拓扑

拓扑有以下領域的意義與應用:.

新!!: 层 (数学)和拓扑 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 层 (数学)和拓扑空间 · 查看更多 »

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

新!!: 层 (数学)和态射 · 查看更多 »

重定向到这里:

層論

传出传入
嘿!我们在Facebook上吧! »