徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

黎曼猜想

指数 黎曼猜想

黎曼猜想由德国數學家波恩哈德·黎曼(Bernhard Riemann)於1859年提出。它是數學中一個重要而又著名的未解決的問題(猜想界皇冠)。多年來它吸引了許多出色的數學家為之絞盡腦汁。.

48 关系: ArXiv埃拉托斯特尼筛法千禧年大獎難題大卫·希尔伯特实数對稱群不确定性原理希尔伯特的23个问题广义黎曼猜想代数几何代数拓扑代數數論德国分布式计算哥德巴赫猜想哈密頓算符哈密顿力学函數域克雷數學研究所積性函數素数素数公式素數定理素性测试約翰·恩瑟·李特爾伍德群论複數調和數質數定理黎曼ζ函數默比乌斯函数默滕斯猜想蘭道函數量子諧振子自伴算子自然對數自然数艾希特大學雅克·阿达马虚数除數函數虛數單位L函數正則量子化波恩哈德·黎曼法里數列戈弗雷·哈罗德·哈代数学家

ArXiv

arXiv(X依希臘文的χ發音,讀音如英語的archive)是一個收集物理學、數學、計算機科學與生物學的論文預印本的網站,始于1991年8月14日。,arXiv.org已收集超過50萬篇預印本;至2014年底,藏量達到1百萬篇。截至2016年10月,提交率已達每月超過10,000篇。.

新!!: 黎曼猜想和ArXiv · 查看更多 »

埃拉托斯特尼筛法

埃拉托斯特尼筛法(κόσκινον Ἐρατοσθένους,sieve of Eratosthenes ),簡稱--,也有人称素数筛。这是一種簡單且历史悠久的筛法,用來找出一定範圍內所有的質數。 所使用的原理是從2開始,將每個質數的各個倍數,標記成合數。一個質數的各個倍數,是一個差為此質數本身的等差數列。此為這個篩法和試除法不同的關鍵之處,後者是以質數來測試每個待測數能否被整除。 埃拉托斯特尼篩法是列出所有小質數最有效的方法之一,其名字來自於古希臘數學家埃拉托斯特尼,並且被描述在另一位古希臘數學家尼科馬庫斯所著的《算術入門》中。.

新!!: 黎曼猜想和埃拉托斯特尼筛法 · 查看更多 »

千禧年大獎難題

千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.

新!!: 黎曼猜想和千禧年大獎難題 · 查看更多 »

大卫·希尔伯特

大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.

新!!: 黎曼猜想和大卫·希尔伯特 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 黎曼猜想和实数 · 查看更多 »

對稱群

对称群可以指:.

新!!: 黎曼猜想和對稱群 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 黎曼猜想和不确定性原理 · 查看更多 »

希尔伯特的23个问题

希尔伯特的23个问题是德國數學家大衛·希爾伯特(David Hilbert)於1900年在巴黎舉行的第二届国际数学家大会上作了题为《数学问题》的演讲,所提出23道最重要的数学问题。希尔伯特问题对推动20世纪数学的发展起了积极的推动作用。在许多数学家努力下,希尔伯特问题中的大多数在20世纪中得到了解决。 希尔伯特问题中未能包括拓扑学、微分几何等领域,除数学物理外很少涉及应用数学,更不曾预料到电脑的发展将对数学产生重大影响。20世纪数学的发展实际上远远超出了希尔伯特所预示的范围。 希尔伯特问题中的1-6是数学基础问题,7-12是数论问题,13-18属于代数和几何问题,19-23属于数学分析。.

新!!: 黎曼猜想和希尔伯特的23个问题 · 查看更多 »

广义黎曼猜想

黎曼猜想是数学中最重要的猜想之一,描述了黎曼ζ函数非平凡零点的分布规律。而其中黎曼ζ函数可以用各种整体L函数(global L-function)替代,由此得到黎曼猜想不同类型的推广。这些推广的猜想描述的是不同L函数非平凡零点分布的规律。许多数学家相信这些猜想是正确的。不过其中仅有部分函数域情形下的推广得到了证明。 整体L函数可以与椭圆曲线、数域(此时称为戴德金ζ函数)、马斯形式(Maass form)或狄利克雷特征(此时称为狄利克雷L函数)相联系。其中,描述戴德金ζ函数的黎曼猜想被称为扩展黎曼猜想(extended Riemann hypothesis,ERH),而描述狄利克雷L函数的黎曼猜想则被称为广义黎曼猜想(generalized Riemann hypothesis,GRH)。(也有许多数学家用“广义黎曼猜想”用作对各种整体L函数推广的总称,而非单指狄利克雷L函数下的情形。).

新!!: 黎曼猜想和广义黎曼猜想 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 黎曼猜想和代数几何 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 黎曼猜想和代数拓扑 · 查看更多 »

代數數論

在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.

新!!: 黎曼猜想和代數數論 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 黎曼猜想和德国 · 查看更多 »

分布式计算

在計算機科學中,分布式计算(Distributed computing),又譯為--。這個研究領域,主要研究分散式系統(Distributed system)如何進行計算。分散式系統是一組電腦,透過網路相互连接傳遞訊息與通訊後并协调它们的行为而形成的系統。组件之间彼此进行交互以实现一个共同的目标。把需要进行大量计算的工程数据分割成小块,由多台计算机分别计算,再上传运算结果後,將結果统一合并得出数据结论的科学。分布式系统的例子来自有所不同的面向服务的架构,大型多人線上遊戲,对等网络应用。 目前常见的分布式计算项目通常使用世界各地上千万志愿者计算机的闲置计算能力,通过互联网进行数据传输(志愿计算)。如分析计算蛋白质的内部结构和相关药物的Folding@home项目,該项目結構庞大,需要惊人的计算量,由一台电脑计算是不可能完成的。虽然现在有了计算能力超强的超级計算機,但這些設備造價高昂,而一些科研机构的经费却又十分有限,藉助分佈式計算可以花費較小的成本來達到目標。.

新!!: 黎曼猜想和分布式计算 · 查看更多 »

哥德巴赫猜想

哥德巴赫猜想(Goldbach's conjecture)是數論中存在最久的未解問題之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陳述為: 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而將一个給定的偶數分拆成兩個質數之和,则被稱之為此數的哥德巴赫分拆。例如, 換句話說,哥德巴赫猜想主張每個大於等於4的偶數都是哥德巴赫數——可表示成兩個質數之和的數。哥德巴赫猜想也是二十世纪初希爾伯特第八問題中的一個子問題。 其實,也有一部分奇數可以用兩個質數的和表示,大多數的奇數無法用兩個質數的和表示,例如:15.

新!!: 黎曼猜想和哥德巴赫猜想 · 查看更多 »

哈密頓算符

#重定向 哈密顿算符.

新!!: 黎曼猜想和哈密頓算符 · 查看更多 »

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

新!!: 黎曼猜想和哈密顿力学 · 查看更多 »

函數域

在代數幾何中,一個整概形 X 的函數域 K_X 由 X 上的有理函數組成;對於一般的概形,相應的對象是有理函數層。雙有理幾何研究的便是由 K_X 所決定的幾何性質。.

新!!: 黎曼猜想和函數域 · 查看更多 »

克雷數學研究所

克雷數學研究所(Clay Mathematics Institute,簡稱CMI)是非營利私人機構,總部在新罕布什尔州彼得堡。機構的目的在於促進和傳播數學知識。它給予有潛質的數學家各種獎項和資助。它在1998年由商人蘭頓·克雷(Landon T. Clay)和哈佛大學數學家亞瑟·傑夫(Arthur Jaffe)創立,蘭頓·克雷資助。.

新!!: 黎曼猜想和克雷數學研究所 · 查看更多 »

積性函數

在數論中,積性函數是指一個定義域為正整數n 的算術函數f(n),有如下性質:f(1).

新!!: 黎曼猜想和積性函數 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 黎曼猜想和素数 · 查看更多 »

素数公式

--,又称--,在数学领域中,表示一种能够僅产生质数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的质数,并且对每个输入的值,此公式产生的结果都是质数。由于质数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述條件的质数公式,但对于质数公式应该具备的性质已经有了大量的了解。.

新!!: 黎曼猜想和素数公式 · 查看更多 »

素數定理

#重定向 質數定理.

新!!: 黎曼猜想和素數定理 · 查看更多 »

素性测试

素数判定,或素性测试,是檢驗一個給定的整數是否為質數的测试。.

新!!: 黎曼猜想和素性测试 · 查看更多 »

約翰·恩瑟·李特爾伍德

约翰·恩瑟·李特爾伍德(John Edensor Littlewood,),英国数学家,最为出名的是他和高德菲·哈罗德·哈代长期的合作。.

新!!: 黎曼猜想和約翰·恩瑟·李特爾伍德 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 黎曼猜想和群论 · 查看更多 »

複數

#重定向 复数 (数学).

新!!: 黎曼猜想和複數 · 查看更多 »

調和數

調和數可以指跟約數和有關的整數歐爾調和數。在數學上,第n個調和數是首n個正整數的倒數和,即 H_n.

新!!: 黎曼猜想和調和數 · 查看更多 »

質數定理

在數論中,素数定理描述素数在自然數中分佈的漸進情況,給出隨著數字的增大,質數的密度逐漸降低的直覺的形式化描述。1896年法國數學家雅克·阿達馬和比利時數學家德拉瓦莱普森(Charles Jean de la Vallée-Poussin)先後獨立給出證明。證明用到了複分析,尤其是黎曼ζ函數。 素数的出現規律一直困惑著數學家。一個個地看,素数在正整數中的出現沒有什麼規律。可是總體地看,素数的個數竟然有規可循。對正實數x,定義π(x)為素数计数函数,亦即不大於x的素数個數。數學家找到了一些函數來估計π(x)的增長。以下是第一個這樣的估計。 其中 ln x 為 x 的自然對數。上式的意思是當 x 趨近無限,π(x)與x/ln x的比值趨近 1。但這不表示它們的數值隨著 x 增大而接近。 下面是對π(x)更好的估計: 其中 (x).

新!!: 黎曼猜想和質數定理 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 黎曼猜想和黎曼ζ函數 · 查看更多 »

默比乌斯函数

比乌斯函数或缪比乌斯函数\mu是指以下的函數: μ(n)的首25个值: 默比乌斯函数是一個積性函數。 以狄利克雷卷積的方法表示,則是 \mu * 1.

新!!: 黎曼猜想和默比乌斯函数 · 查看更多 »

默滕斯猜想

滕斯猜想是数论中的一个猜想,由汤姆斯·斯蒂尔吉斯在一封于1885年写给夏尔·埃尔米特与弗朗茨·默滕斯(Franz Mertens)的信中提出。这一猜想如果成立的话可以推出黎曼猜想,不过已被安德鲁·奥德里兹科(Andrew Odlyzko)与赫尔曼·特里尔(Herman te Riele)于1985年证否。.

新!!: 黎曼猜想和默滕斯猜想 · 查看更多 »

蘭道函數

對於所有非負整數n,蘭道函數g(n)定義為對稱群S_n的所有元素的秩之中,最大的一個。或者說,g(n)是n的所有整數分拆之中的最小公倍數。 例如5.

新!!: 黎曼猜想和蘭道函數 · 查看更多 »

量子諧振子

在量子力學裏,量子諧振子(quantum harmonic oscillator)是古典諧振子的延伸。其為量子力學中數個重要的模型系統中的一者,因為一任意勢在穩定平衡點附近可以用諧振子勢來近似。此外,其也是少數幾個存在簡單解析解的量子系統。量子諧振子可用來近似描述分子振動。.

新!!: 黎曼猜想和量子諧振子 · 查看更多 »

自伴算子

在數學裏,作用於一個有限維的酉空間,一個自伴算子(self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。.

新!!: 黎曼猜想和自伴算子 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 黎曼猜想和自然對數 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 黎曼猜想和自然数 · 查看更多 »

艾希特大學

艾希特大学(University of Exeter)大學前身為1900年成立的「皇家亞伯特紀念學院」(Royal Albert Memorial College)和1922年創校的「西南英格蘭大學學院」(University College of the South West of England)”。於1955年獲得皇家特許,正式升格為大學。大學位於英國西南部德雲郡艾希特。艾希特大學曾是英國大學「1994年集團」成員之一。2012年3月12日,艾希特大学退出1994年集團,加入有英國常春藤聯盟之稱的羅素集團。.

新!!: 黎曼猜想和艾希特大學 · 查看更多 »

雅克·阿达马

雅克·所罗门·阿达马(Jacques Solomon Hadamard,)是法国数学家。他最有名的是他的素数定理证明。.

新!!: 黎曼猜想和雅克·阿达马 · 查看更多 »

虚数

虛數是一种複數,可以写作实数与虚数单位 i 的乘积在電子學及相關領域內,i 通常表達電流,故改為以 j 表示虛數單位。,其中 i 由 i^2.

新!!: 黎曼猜想和虚数 · 查看更多 »

除數函數

在數論上,除數函數是一類算術函數。 除數函數\sigma_x(n)定義為n的正因數的x次冪之和,即 其中一些特殊情況:.

新!!: 黎曼猜想和除數函數 · 查看更多 »

虛數單位

在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.

新!!: 黎曼猜想和虛數單位 · 查看更多 »

L函數

在當代數論中,L函數是一類重要的複變數函數,蘊含重要的數論、算術代數幾何或表示理論信息,目前仍有大量待解的猜想。L函數是黎曼ζ函數的推廣,最簡單的例子是狄利克雷L函數,狄利克雷藉此研究等差數列中的素數密度。 許多L函數也有p進數版本。 L函數通常以無窮級數表示,有時也稱為L級數;這種級數通常只對虛部夠大的參數 s 方收斂。一如黎曼ζ函數,L級數往往能延拓為整個複數平面上的亞純函數或全純函數,並具備乘積表法及函數方程。.

新!!: 黎曼猜想和L函數 · 查看更多 »

正則量子化

物理學中,正則量子化是多種對古典理論進行量子化的數學方法中的一種;在對古典場論進行量子化時,又稱二次量子化。「正則」這個詞其實源自古典理論,指的是理論中一種特定的結構(稱作辛結構(Symplectic structure)),這樣的結構在量子理論中也被保留。這在保羅·狄拉克嘗試建構量子場論時由他首先強調。 普通的量子力学方法只能处理粒子数守恒的系统。但在相对论量子力学中,粒子可以产生和湮没,普通量子力学的数学表述方法不再适用。二次量子化通过引入产生算符和湮没算符处理粒子的产生和湮没,是建立相对论量子力学和量子场论的必要数学手段。相比普通量子力学表述方式,二次量子化方法能够自然而简洁的处理全同粒子的对称性和反对称性,所以即使在粒子数守恒的非相对论多体问题中,也被广泛应用。.

新!!: 黎曼猜想和正則量子化 · 查看更多 »

波恩哈德·黎曼

格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.

新!!: 黎曼猜想和波恩哈德·黎曼 · 查看更多 »

法里數列

數學上,n階的法里數列是0和1之間最簡分數的數列,由小至大排列,每個分數的分母不大於n。每個法里數列從0開始,至1結束,寫作0⁄1和1⁄1,但有些人不把這兩項包括進去。有時法里數列也稱為法里級數,嚴格來說這名字不正確,因為法里數列的項不會加起來。.

新!!: 黎曼猜想和法里數列 · 查看更多 »

戈弗雷·哈罗德·哈代

戈弗雷·哈羅德·哈代(Godfrey Harold Hardy,),英国數學家,出生于英格兰萨里郡,在剑桥大学三一学院毕业,其后在剑桥大学、牛津大学任教并成为英国王家学会成员。他长期担任牛津大学和剑桥大学的数学教授职位,与另一位英国数学家利特尔伍德进行了长达35年的合作,发表了过百篇论文,主要涉及数论中的丢番图逼近,堆垒数论;素数分布理论与黎曼函数;调和分析中的三角级数理论,发散级数求和与陶伯型定理,不等式,积分变换与积分方程等方面,对分析学和数论的发展有深刻的影响。他被认为是二十世纪英国分析学派的代表人物。 哈代在数学界外较为人所知的是他在1940年關於數學之美的隨筆-《-zh-hans:一个数学家的辩白;zh-hant:一個職業數學家的告白-》。书中包括了他对纯数学和数学应用的看法,經常被認為是寫給外行人的著作中,對於一位在工作中的數學家心靈最好的見解。 從1914年開始,哈代成為印度數學家斯里尼瓦瑟·拉馬努金的導師,生成了一段著名的關係。哈代很快的發現拉馬努金沒受教育卻表現出眾的才華,兩人之後成為親密的合作者。在保羅·艾狄胥的訪問中,哈代被問到什麼是他自己對數學最大的貢獻,他不加思索的回答是發現了拉馬努金。他稱他們之間的合作關係為:「我人生中的一個浪漫的意外」(the one romantic incident in my life.). Retrieved 2 December 2010.

新!!: 黎曼猜想和戈弗雷·哈罗德·哈代 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 黎曼猜想和数学家 · 查看更多 »

重定向到这里:

黎曼假設

传出传入
嘿!我们在Facebook上吧! »