徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

哈密顿力学

指数 哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

53 关系: 动力系统动量南部力学威廉·哈密頓实数广义坐标交換律度量二次型廣義動量伪黎曼流形位形空间体积形式余切丛微分方程刘维尔定理 (哈密顿力学)哈密顿-雅可比方程哈密顿向量场光滑函数勒壤得轉換線性泛函纤维纤维丛约瑟夫·拉格朗日经典力学牛顿运动定律直角坐标系相空間节丛角动量黎曼流形辛同胚辛向量场辛向量空间辛流形连续函数运动方程Portable Document FormatPostScript极坐标系李代數概率分布泊松代数泊松括號有单位的海森伯群测地线时间拓扑空间...拉格朗日力学拉格朗日量拉格朗日方程式 扩展索引 (3 更多) »

动力系统

动态系统(dynamical system)是数学上的一个概念。動態系统是一种固定的规则,它描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。例如描述钟摆晃动、管道中水的流动,或者湖中每年春季鱼类的数量,凡此等等的数学模型都是動態系统。 在動態系统中有所谓状态的概念,状态是一组可以被确定下来的实数。状态的微小变动对应这组实数的微小变动。这组实数也是一种流形的几何空间坐标。動態系统的演化规则是一组函数的固定规则,它描述未来状态如何依赖于当前状态的。这种规则是确定性的,即对于给定的时间间隔內,从现在的状态只能演化出一个未来的状态。 若只是在一系列不连续的时间点考察系统的状态,则这个動態系统为离散動態系统;若时间连续,就得到一个连续動態系统。如果系统以一种连续可微的方式依赖于时间,我们就称它为一个光滑動態系统。.

新!!: 哈密顿力学和动力系统 · 查看更多 »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 哈密顿力学和动量 · 查看更多 »

南部力学

经典力学自牛顿创立以来,经拉格朗日和哈密顿等人的努力发展成为分析力学,并向刚体力学、弹性力学、流体力学等具体领域继续推进。1973年,南部阳一郎提出一种逻辑上自恰的广义力学体系,称为南部力学。正如黎曼几何的真正价值直到广义相对论出现后才开始显现,而南部力学,除了南部自己指出的它与刚体力学的联系外,尚有空间作进一步研究。.

新!!: 哈密顿力学和南部力学 · 查看更多 »

威廉·哈密頓

威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.

新!!: 哈密顿力学和威廉·哈密頓 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 哈密顿力学和实数 · 查看更多 »

广义坐标

#重定向 廣義座標.

新!!: 哈密顿力学和广义坐标 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 哈密顿力学和交換律 · 查看更多 »

度量

度量是指對於一個物體或是事件的某個性質給予一個數字,使其可以和其他物體或是事件的相同性質比較。度量可以是對一物理量(如長度、尺寸或容量等)的估計或測定,也可以是其他較抽象的特質。 度量通常以一標準或度量衡表示。度量以數字單位的標準來表示,如距離即以多少英里或多少公里來表示。度量是大部份自然科學、技術、及其他社會科學中定量研究的基礎。 度量的過程為估計一數量的多寡和相同類型(如長度、時間、重量等)一單位的多寡之間的比例。度量即為此過程的結果,表示為數字加上一個單位,其中實數為估計的比例。如9公尺,其便為物體長度和長度單位,即公尺之間的比例。不像計數和整數個數個物體一般地可精確知道,每一個度量都是個存在些許不確定性的估計。度量量包括了測量尺度(包括量值)、计量单位及不确定性。透過度量可以比較不同的量測,並且減少誤會。有關度量的科學稱為计量学。.

新!!: 哈密顿力学和度量 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 哈密顿力学和二次型 · 查看更多 »

廣義動量

拉格朗日力學與哈密頓力學時常涉及廣義動量。這是因為採用廣義坐標有許多優點。而廣義動量是正則共軛於廣義坐標的物理量,又稱為共軛動量。 假設一個物理系統的廣義坐標是 (q_1,\ q_2,\ q_3,\ \dots,\ q_N)\,\! ,則廣義速度為 (\dot_1,\ \dot_2,\ \dot_3,\ \dots,\ \dot_N)\,\! 。表示廣義動量為 (p_1,\ p_2,\ p_3,\ \dots,\ p_N)\,\! 。定義廣義動量為拉格朗日量 \mathcal\,\! 隨廣義速度的導數:.

新!!: 哈密顿力学和廣義動量 · 查看更多 »

伪黎曼流形

伪黎曼流形(Pseudo-Riemannian manifold)是一光滑流形,其上有一光滑、对称、点点非退化的(0,2) 張量。此張量稱為伪黎曼度量或伪度量張量。 伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每個正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。 每一個非退化對稱,雙線性形式有一個固定的度量符号(p,q)。這裡p與q記作正特徵值及負特徵值的个数。注意p + q.

新!!: 哈密顿力学和伪黎曼流形 · 查看更多 »

位形空间

经典力学中,位形空间(或译组态空间)是一个物理系统可能处于的所有可能状态的空间,可以有外部约束。一个典型系统的位形空间具有流形的结构;因此,它也称为位形流形。 例如,运动在普通欧几里得空间中的单个粒子的位形空间就是R3。对于N个粒子的系统,组态空间就是R3N,或者说它的没有两个位置重叠的子空间。更一般地,可以将在一个流形M中运动的N个粒子的系统的位形空间看作函数空间 MN。 要同时考虑位置和动量,就必须转到位形空间的余切丛中。这个更大的空间称为系统的相空间。简单说来,一个位形空间通常是一个相空间(参看拉格朗日分布)从函数空间构造的“一半”。 在量子力学中,路径积分表述强调了位形的历史。 位形空间也和辫理论相关,因为一条弦不穿过本身的条件可以表述为将函数空间的对角线切除。.

新!!: 哈密顿力学和位形空间 · 查看更多 »

体积形式

数学中,体积形式提供了函数在不同坐标系(比如球坐标和圆柱坐标)下对体积积分的一种工具。更一般地,一个体积元是流形上一个测度。 在一个定向n-维流形上,体积元典型地由体积形式生成,所谓体积元是一个处处非零的n-阶微分形式。一个流形具有体积形式当且仅当它是可定向的,而可定向流形有无穷多个体积形式(细节见下)。 有一个推广的伪体积形式概念,对无论可否定向的流形都存在。 许多类型的流形有典范的(伪)体积形式,因为它们有额外的结构保证可选取一个更好的体积形式。在复情形,一个带有全纯体积形式的凯勒流形是卡拉比-丘流形。.

新!!: 哈密顿力学和体积形式 · 查看更多 »

余切丛

微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密顿函数;这样余切丛可以理解为哈密顿力学讨论的相空间。.

新!!: 哈密顿力学和余切丛 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 哈密顿力学和微分方程 · 查看更多 »

刘维尔定理 (哈密顿力学)

在物理学中,刘维尔定理(Liouville's theorem)是经典统计力学与哈密顿力学中的关键定理。该定理断言相空间的分布函数沿着系统的轨迹是常数——即给定一个系统点,在相空间游历过程中,该点邻近的系统点的密度关于时间是常数。 它以法国数学家约瑟夫·刘维尔命名。这也是辛拓扑与遍历论中的有关数学结果。.

新!!: 哈密顿力学和刘维尔定理 (哈密顿力学) · 查看更多 »

哈密顿-雅可比方程

#重定向 哈密頓-雅可比方程式.

新!!: 哈密顿力学和哈密顿-雅可比方程 · 查看更多 »

哈密顿向量场

在数学与物理中,哈密顿向量场是辛流形上一个向量场,定义在任何能量函数或哈密顿函数上。以物理学家和数学家威廉·卢云·哈密顿命名。哈密顿向量场是经典力学中的哈密顿方程的几何表现形式,哈密顿向量场的积分曲线表示哈密顿形式的运动方程的解。由哈密顿向量场生成的流是辛流形的微分同胚,在物理中称为典范变换,在数学中称为(哈密顿)辛同胚。 哈密顿向量场可以更一般地定义在任何泊松流形上。对应于流形上的函数 f 与 g 的两个哈密顿向量场的李括号也是一个哈密顿向量场,其哈密顿函数由 g 与 f 的泊松括号给出。.

新!!: 哈密顿力学和哈密顿向量场 · 查看更多 »

光滑函数

光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.

新!!: 哈密顿力学和光滑函数 · 查看更多 »

勒壤得轉換

勒壤得轉換(Legendre transformation)是一個在數學和物理中常見的技巧,得名於阿德里安-馬裡·勒壤得(Arien-Marie Legendre)。该操作是一个实变量的实值凸函数的对合变换。 它经常用于经典力学中,从拉格朗日形式导出哈密顿形式;以及在热力学中,推导出热力学势,并求解多个变量的微分方程。.

新!!: 哈密顿力学和勒壤得轉換 · 查看更多 »

線性泛函

在線性代數中,線性泛函是指由向量空間到對應純量域的線性映射。在 \mathbbR^n ,若向量空間的向量以列向量表示;線性泛函則會以行向量表示,在向量上的作用則為它們的矩陣積。一般地,如果 V 是域 k 上的向量空間,線性泛函 f 是一个从 V 到 k 的函数,它有以下的线性特性: 所有從 V 到 k 的線性泛函集合, 記為 \operatorname_k(V,k), 本身即為一向量空間,稱為 V 的 (代數)對偶空間。.

新!!: 哈密顿力学和線性泛函 · 查看更多 »

纤维

纖維(美:fiber;英:fibre)是指由連續或不連續的細絲組成的物質。在动植物体内,纤维在维系组织方面起到重要作用。纖維用途广泛,可織成細線、線頭和麻繩,造纸或织毡时还可以织成纤维层;同時也常用來製造其他物料,及与其他物料共同组成复合材料。 纖維可被分作天然纤维及人造纤维。.

新!!: 哈密顿力学和纤维 · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 哈密顿力学和纤维丛 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

新!!: 哈密顿力学和约瑟夫·拉格朗日 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 哈密顿力学和经典力学 · 查看更多 »

牛顿运动定律

牛頓運動定律(Newton's laws of motion)描述物體與力之間的關係,被譽為是經典力學的基礎。這定律是英國物理泰斗艾薩克·牛頓所提出的三條運動定律的總稱,其現代版本通常這樣表述:.

新!!: 哈密顿力学和牛顿运动定律 · 查看更多 »

直角坐标系

#重定向 笛卡尔坐标系.

新!!: 哈密顿力学和直角坐标系 · 查看更多 »

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

新!!: 哈密顿力学和相空間 · 查看更多 »

节丛

在微分几何中,节丛(jet bundle,或称射流丛、射丛)是一种特殊的构造,从给定的光滑纤维丛建立一个新的光滑纤维丛。它使得在纤维丛的截面上用一种不变形式来表达微分方程成为可能。 历史上,节丛归功于埃雷斯曼,它是嘉当的延长方法上的一个进步,该方法通过在新引入的形式化变量上加入微分形式条件的办法来以几何方式处理高阶导数。节丛有时候也称为喷射(sprays)。.

新!!: 哈密顿力学和节丛 · 查看更多 »

角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

新!!: 哈密顿力学和角动量 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 哈密顿力学和黎曼流形 · 查看更多 »

辛同胚

在数学中,一个辛同胚(symplectomorphism)是辛流形范畴中的一个同构。.

新!!: 哈密顿力学和辛同胚 · 查看更多 »

辛向量场

在数学与物理学中,辛向量场(symplectic vector field)是流保持辛形式的向量场。即如果 (M,\omega) 是一个辛形式,则如果向量场 X\in\mathfrak(M) 的流保持辛结构 (M,\omega),则称为一个辛向量场。换句话说,李导数为零: 或者,一个向量场是辛的如果它与辛形式内乘是闭的(内乘给出从向量场到 1-形式的一个映射,因辛形式的非退化性这是一个同构)。两个定义的等价性从辛形式的闭性与李导数用外导数表示的嘉当公式推出。 如果一个向量场与辛形式的内乘是恰当的(特别地是闭的),称为哈密顿向量场。如果第一德拉姆上同调群 H^1(M) 是平凡的,故所有闭形式是恰当的,所以辛相邻场是哈密顿的。这就是说:“一个辛向量场是哈密顿的之阻碍属于 H^1(M)。”特别地,单连通空间上的辛向量场是哈密顿的。 两个辛向量场的李括号是哈密顿的,从而辛向量集合与哈密顿向量场集合各自形成一个李代数。 Category:辛几何.

新!!: 哈密顿力学和辛向量场 · 查看更多 »

辛向量空间

数学中,一个辛矢量空间是带有辛形式 ω 的向量空间 V,所谓辛形式即一个非退化斜对称的双线性形式。 确切地说,一个辛形式是一个双线性形式 ω :V × V → R 满足:.

新!!: 哈密顿力学和辛向量空间 · 查看更多 »

辛流形

数学上,一个辛流形是一个装备了一个闭、非退化2-形式ω的光滑流形,ω称为辛形式。辛流形的研究称为辛拓扑。辛流形作为经典力学和分析力学的抽象表述中的流形的余切丛自然的出现,例如在经典力学的哈密顿表述中,该领域的一个主要原因之一:一个系统的所有组态的空间可以用一个流形建模,而该流形的余切丛描述了该系统的相空间。 一个辛流形上的任何实值可微函数H可以用作一个能量函数或者叫哈密顿量。和任何一个哈密顿量相关有一个哈密顿向量场;该哈密顿向量场的积分曲线是哈密顿-雅可比方程的解。哈密顿向量场定义了辛流形上的一个流场,称为哈密顿流场或者叫辛同胚。根据刘维尔定理,哈密顿流保持相空间的体积形式不变。.

新!!: 哈密顿力学和辛流形 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

新!!: 哈密顿力学和连续函数 · 查看更多 »

运动方程

运动方程是刻划系统运动的物理参量所满足的方程或方程组。它们以这些参量对于时间的微分方程形式出现。.

新!!: 哈密顿力学和运动方程 · 查看更多 »

阶可能指:.

新!!: 哈密顿力学和阶 · 查看更多 »

Portable Document Format

#重定向 可移植文档格式.

新!!: 哈密顿力学和Portable Document Format · 查看更多 »

PostScript

PostScript(PS)是主要用于电子产业和桌面出版领域的一种页面描述语言和编程语言。.

新!!: 哈密顿力学和PostScript · 查看更多 »

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

新!!: 哈密顿力学和极坐标系 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 哈密顿力学和李代數 · 查看更多 »

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

新!!: 哈密顿力学和概率分布 · 查看更多 »

泊松代数

数学中,泊松代数(Poisson algebra)是具有一个满足莱布尼兹法则的李括号之结合代数;即括号也是导子。泊松代数自然出现于哈密顿力学,也是量子群研究的中心。携有一个泊松代数的流形也叫做泊松流形,辛流形与泊松-李群是其特列。此代数的名字以西莫恩·德尼·泊松命名。.

新!!: 哈密顿力学和泊松代数 · 查看更多 »

泊松括號

在數學及经典力學中,泊松括號是哈密顿力學中重要的運算,在哈密頓表述的動力系統中時間演化的定義起着中心角色。在更一般的情形,泊松括号用来定义一个泊松代数,而泊松流形是一个特例。它们都是以西莫恩·德尼·泊松命名的。.

新!!: 哈密顿力学和泊松括號 · 查看更多 »

有单位的

在數學裡,一代數結構是有单位的(unital 或 unitary),當它含有一乘法单位元素,即含有一元素 1,對所有此代數結構內的元素 x ,有 1x.

新!!: 哈密顿力学和有单位的 · 查看更多 »

海森伯群

在數學裡,海森堡群是以维尔纳·海森堡來命名的,為如下之三階上三角矩陣所組成的群: \end.

新!!: 哈密顿力学和海森伯群 · 查看更多 »

测地线

测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线(geodesic)的名字来自对于地球尺寸与形状的大地测量学(geodesy)。.

新!!: 哈密顿力学和测地线 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 哈密顿力学和时间 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 哈密顿力学和拓扑空间 · 查看更多 »

拉格朗日力学

拉格朗日力学(Lagrangian mechanics)是分析力学中的一种,于1788年由約瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,並運用最小作用量原理,是分析力学的重要组成部分。 经典力学最初的表述形式由牛顿建立,它着重於分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。拉格朗日引入了广义坐标的概念,又运用达朗贝尔原理,求得与牛顿第二定律等价的拉格朗日方程。不仅如此,拉格朗日方程具有更普遍的意义,适用范围更广泛。还有,选取恰当的广义坐标,可以大大地简化拉格朗日方程的求解过程。.

新!!: 哈密顿力学和拉格朗日力学 · 查看更多 »

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

新!!: 哈密顿力学和拉格朗日量 · 查看更多 »

拉格朗日方程式

拉格朗日方程式(Lagrange equation),因數學物理學家约瑟夫·拉格朗日而命名,是分析力學的重要方程式,可以用來描述物體的運動,特別適用於理論物理的研究。拉格朗日方程式的功能相等於牛頓力學中的牛頓第二定律。.

新!!: 哈密顿力学和拉格朗日方程式 · 查看更多 »

重定向到这里:

哈密尔顿力学哈密尔顿量哈密頓函數哈密頓方程式哈密頓量哈密顿方程哈密顿系统哈密顿运动方程漢密爾頓表述

传出传入
嘿!我们在Facebook上吧! »