徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

角动量

指数 角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

21 关系: 动量力矩叉积守恒定律交換子开普勒定律位置向量列維-奇維塔符號矢量球座標系理想氣體热力学物理学物理量角動量算符角速度轉動慣量能量均分定理自旋配分函数悖论

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 角动量和动量 · 查看更多 »

力矩

在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.

新!!: 角动量和力矩 · 查看更多 »

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

新!!: 角动量和叉积 · 查看更多 »

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

新!!: 角动量和守恒定律 · 查看更多 »

交換子

在抽象代数中,一个群的交換子(commutator)或换位子是一个二元運算子。设g及h 是 群G中的元素,他們的交換子是g −1 h −1 gh,常記為。只有当g和h符合交换律(即gh.

新!!: 角动量和交換子 · 查看更多 »

开普勒定律

开普勒定律是开普勒所发现、关于行星运动的定律。他於1609年在他出版的《新天文学》科學雜誌上发表了关于行星运动的两条定律,又於1618年,发现了第三条定律。 开普勒幸运地得到了著名丹麦天文学家第谷·布拉赫所观察与收集、且非常精确的天文資料。大约于1605年,根据布拉赫的行星位置資料,开普勒发现行星的移动遵守著三条相当简单的定律。同年年底,他撰寫完成了發表文稿。但是,直到1609年,才在《新天文学》科學雜誌發表,這是因為布拉赫的觀察數據屬於他的繼承人,不能隨便讓別人使用,因此產生的一些法律糾紛造成了延遲。 在天文学与物理学上、开普勒的定律给予亚里士多德派与托勒密派极大的挑战。他主张地球是不斷地移动的;行星轨道不是圓形(epicycle)的,而是椭圆形的;行星公转的速度不等恒。这些论点,大大地动摇了当时的天文学与物理学。经过了几乎一個世纪披星戴月,废寝忘食的研究,物理学家终于能够運用物理理论解释其中的奧秘。艾萨克·牛顿應用他的第二定律和万有引力定律,在数学上严格地証明了开普勒定律,也让人们了解了其中的物理意义。.

新!!: 角动量和开普勒定律 · 查看更多 »

位置向量

在三维空间裏,相对于某参考点,一个质点的位置,可以用位置向量来表示。設定一坐标系。參考这坐标系,质点的坐标,就是相对于這坐标系的原点的位置向量。在运动学裏,位置向量是描述质点运动的基本参量,是一个向量:有大小,也有方向。.

新!!: 角动量和位置向量 · 查看更多 »

列維-奇維塔符號

列維-奇維塔符號(Levi-Civita symbol),特別在線性代數,張量分析和微分幾何等數學範疇中很常見到,用以表示數字的集合;是對於中某個正整數所形成排列的正負符號來定義。它以義大利數學家和物理學家Tullio Levi-Civita命名。其它名稱包括置換符號,反對稱符號或交替符號,是有關於反對稱的屬性與排列的定義。 希臘小寫字母或是表示列維-奇維塔符號的標準記號,較不常見的也有以拉丁文小寫記號。下標符能與張量分析兼容的方式來顯示排列: 其中每個下標取值為。有個索引值為,可以排成為-維陣列。 這個符號的關鍵定義是全部索引中的完全反對稱性。當任何兩個索引互換、相等或否定時,則符號的正負即有變化: 如果兩個索引相等,則此符號變為0。當全部索引都不相等時,我們有: 其中(稱為排列的奇偶性質)是要將 回復的自然次序時,而索引所需的對換次數,而因子被稱為排列的符號。的值必須有定義,否則所有排列的特定符號值是無法確定的。大多數作者選擇,表示列維-奇維塔符號等於各別索引不相等時的置換符號,在本文中使用這個定義。 “-維列維-奇維塔符號”一詞是指符號上的索引數,和所討論的向量空間維度相符,可以是歐幾里得或非歐幾里得空間,例如,或閔可夫斯基空間。列維-奇維塔符號的值與任何張量和參考座標系無關。此外,特別固定的“符號”強調,它並不因為在座標系之間如何變換而就是某一個張量;然而,它可以被理解為張量的密度。 列維-奇維塔符號讓我們可使用索引符號來表示方陣的行列式,及三維歐幾里德空間中的兩個向量的叉積。.

新!!: 角动量和列維-奇維塔符號 · 查看更多 »

矢量

#重定向 向量.

新!!: 角动量和矢量 · 查看更多 »

球座標系

在數學裏,球座標系(Spherical coordinate system)是一種利用球座標(r,\ \theta,\ \phi)表示一個點p在三維空間的位置的三維正交座標系。 右圖顯示了球座標的幾何意義:原點與點P之間的徑向距離r,原點到點P的連線與正z-軸之間的天頂角\theta,以及原點到點P的連線,在xy-平面的投影線,與正x-軸之間的方位角\phi。.

新!!: 角动量和球座標系 · 查看更多 »

理想氣體

想氣體為假想的气体。其假設為:.

新!!: 角动量和理想氣體 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 角动量和热力学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 角动量和物理学 · 查看更多 »

物理量

物理量,是物理之中能測量的量,例如質量、體積,或者是測量和通常以數和物理單位(通常偏好國際單位制單位)的積表達的結果。 在1971年第十四屆國際度量衡大會(General Conference of Weights & Measures)中,選擇了七個物理量作為基本量的國際單位系統,其法文名稱"Le Système International d’unités",縮寫為"SI",其基本七個物理量如下:.

新!!: 角动量和物理量 · 查看更多 »

角動量算符

在量子力學裏,角動量算符(angular momentum operator)是一種算符,類比於經典的角動量。在原子物理學涉及旋轉對稱性(rotational symmetry)的理論裏,角動量算符佔有中心的角色。角動量,動量,與能量是物體運動的三個基本特性Introductory Quantum Mechanics, Richard L. Liboff, 2nd Edition, ISBN 0201547155。.

新!!: 角动量和角動量算符 · 查看更多 »

角速度

角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体轉動時,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是贗向量),通常用希腊字母Ω或ω来表示。 在国际单位制中,单位是弧度每秒(rad/s)。在日常生活,通常量度單位時間內的轉動週數,即是每分鐘轉速(rpm),電腦硬盤和汽車引擎轉數就是以rpm來量度,物理學則以rev/min表示每分鐘轉動週數。 角速度的方向垂直于转动平面,可通过右手定则来确定,物體以逆時針方向轉動其角速度為正值,物體以順時針方向轉動其角速度為負值。 角速度量值的大小稱作角速率,通常也是用ω來表示。.

新!!: 角动量和角速度 · 查看更多 »

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

新!!: 角动量和轉動慣量 · 查看更多 »

能量均分定理

在经典統計力學中,能量均分定理(Equipartition Theorem)是一種聯繫系統溫度及其平均能量的基本公式。能量均分定理又被稱作能量均分定律、能量均分原理、能量均分,或僅稱均分。能量均分的初始概念是熱平衡時能量被等量分到各種形式的运动中;例如,一个分子在平移運動时的平均動能應等於其做旋轉運動时的平均動能。 能量均分定理能够作出定量預測。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均值,如某特定粒子的動能又或是一个彈簧的勢能。例如,它預測出在熱平衡時理想氣體中的每個粒子平均動能皆為(3/2)kBT,其中kB為玻爾兹曼常數而T為溫度。更普遍地,無論多複雜也好,它都能被應用於任何处于熱平衡的经典系統中。能量均分定理可用於推導经典理想氣體定律,以及固體比熱的杜隆-珀蒂定律。它亦能夠應用於預測恒星的性質,因为即使考虑相對論效應的影響,该定理依然成立。 儘管均分定理在一定条件下能够对物理现象提供非常準確的預測,但是當量子效應變得显著時(如在足够低的温度条件下),基于这一定理的预测就变得不准确。具体来说,当熱能kBT比特定自由度下的量子能級間隔要小的時候,該自由度下的平均能量及熱容比均分定理預測的值要小。当熱能比能級間隔小得多时,这样的一個自由度就說成是被“凍結”了。比方說,在低溫時很多種類的運動都被凍結,因此固體在低溫時的熱容會下降,而不像均分定理原測的一般保持恒定。對十九世紀的物理學家而言,這种熱容下降现象是表明經典物理学不再正確,而需要新的物理学的第一個徵兆。均分定理在預測電磁波的失敗(被稱为“紫外災變”)普朗克提出了光本身被量子化而成為光子,而這一革命性的理論對刺激量子力學及量子場論的發展起到了重要作用。.

新!!: 角动量和能量均分定理 · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

新!!: 角动量和自旋 · 查看更多 »

配分函数

配分函数(Partition function)是一个平衡態统计物理学中经常应用到的概念,經由計算配分函數可以将微观物理状态与宏观物理量相互联系起来,而配分函數等價於自由能,與路徑積分在數學上有巧妙的類似。 配分函数通常意指正則系綜中的配分函數,而其他的系綜,亦有其相對應的配分函數,如巨正則系綜對應巨配分函數。.

新!!: 角动量和配分函数 · 查看更多 »

悖论

悖論,亦稱為弔詭或詭局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一詞,来自希腊语παράδοξος ,paradoxos,意思是“未预料到的”,“奇怪的”。 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 paradox其實亦有“似非而是”的解釋。即是用普通常識看上去不正確,但其實是正確或是有可能的。例如“站著比走路更累”。一般常識是走路比站著累,但要一個人例如在公園裡站一個小時,他可能寧願走動一個小時。因為“站著比走路更累”。也例如狹義相對論裡面的雙生子佯謬亦是另外一個例子。 佛法中也有釋迦牟尼佛破外道悖論的例子:如《大智度論》卷一中舉出長爪梵志的例子:長爪梵志提倡一種“一切法不受”的主張,其意思是說他不接受世間一切理論。釋迦牟尼佛就問他:「你接不接受你自己所建立的這個“一切法不受”的理論?」長爪梵志像一匹千里馬一樣有智慧,不必等到鞭子打到身上才起跑,只看到鞭影覺悟了。換句話說,當釋迦牟尼佛提出這個問題的時候,長爪梵志就知道自己的理論是有問題的──如果接受,那就是“接受一種理論”這與他自己建立的“一切法不受”的主張違背;如果不接受,那他的主張就不存在。就這樣,一方面顯示長爪梵志的理論是一種悖論,另一方面也突顯釋迦牟尼佛以非常簡短的開示就把長爪梵志折服了。.

新!!: 角动量和悖论 · 查看更多 »

重定向到这里:

动量矩角動量軌角動量

传出传入
嘿!我们在Facebook上吧! »