目录
53 关系: 基数,卡拉比-丘流形,可定向性,同倫,同构,坐标转换,坐標系,复平面,主齐性空间,平凡 (數學),庞加莱度量,度量,度量张量,伪黎曼流形,形变收缩,当且仅当,体积,余切丛,微分同胚,微分形式,微分几何,微积分学,德拉姆,圓柱坐標系,哈尔测度,凯勒流形,函数,全纯函数,勒贝格测度,图册 (拓扑学),球坐标,积分,纤维丛,绝对连续,行列式,覆疊空間,黎曼流形,辛向量空间,辛流形,连通空间,霍奇对偶,雅可比矩阵,G-结构,李群,欧几里得空间,截面 (纤维丛),流 (数学),流形,测度,数学,... 扩展索引 (3 更多) »
- 微分形式
- 行列式
- 黎曼几何
基数
基数或量數可以指:.
查看 体积形式和基数
卡拉比-丘流形
卡拉比–丘流形(Calabi–Yau manifold)在数学上是一个的第一陈类为0的紧致n维凯勒流形(Kähler manifolds),也叫做卡拉比–丘 n-流形。数学家卡拉比(Eugenio Calabi)在1957年猜想所有这种流形(对于每个凯勒类)有一个里奇平坦的度量,该猜想于1977年被丘成桐证明,成为丘定理(Yau's theorem)。因此,卡拉比–丘流形也可定义为「紧里奇平坦卡拉比流形」(compact Ricci-flat Kähler manifold)。 也可以定义卡拉比–丘n流形为有一个SU(n)和樂(holonomy)的流形。再一个等价的定义是流形有一个全局非0的全纯(n,0)-形式。.
查看 体积形式和卡拉比-丘流形
可定向性
欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t).
查看 体积形式和可定向性
同倫
在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.
查看 体积形式和同倫
同构
在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.
查看 体积形式和同构
坐标转换
坐标转换,是指在一个m维拓扑流形中一个坐标邻域到另一个坐标邻域的坐标的变换。形式上说,m维拓扑流形\mathcal上两个相交的坐标邻域(U,\varphi),(V,\psi),同胚映射\psi\cdot\varphi^:\varphi(U\cap V)\rightarrow \psi(U\cap V)被称为是(U,\varphi)到(V,\psi)的坐标转换。.
查看 体积形式和坐标转换
坐標系
坐標系是數學或物理學用語,定義如下: 对于一个n维系统,能够使每一个点和一组(n个)标量构成一一对应的系统。 坐標系可以用一個有序多元组表示一個點的位置。一般常用的坐標系,各維坐標的數字均為實數,但在高等數學中坐標的數字可能是複數,甚至是或是其他抽象代數中的元素(如交换环)。坐標系可以使幾何學的問題轉換為數字的問題,反之亦然,是解析幾何學的基礎。 描述地理位置時所用的經度及緯度就是坐標系統的一種。在物理學中,描述一系統在空間中運動的參考坐標系統則稱作參考系。.
查看 体积形式和坐標系
复平面
数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.
查看 体积形式和复平面
主齐性空间
数学上,对于 群 G的主齐性空间,或者叫 G-旋子(英文:torsor),是一个集合 X, G在其上自由并可递地作用。也即,X是G的齐性空间,满足每个点的定点子群都是平凡群。 在其它范畴中有类似的定义,其中.
查看 体积形式和主齐性空间
平凡 (數學)
数学中,术语平凡或平凡的经常用于结构非常简单的对象(比如群或拓扑空间),有時亦會用明顯或乏趣這兩個詞代替,但对非数学工作者来说,它们有时可能比其他更复杂的对象更难想象或理解。 例如:.
查看 体积形式和平凡 (數學)
庞加莱度量
数学中,庞加莱度量(Poincaré metric),以昂利·庞加莱命名,描述了一个常负曲率二维曲面的度量张量。它是双曲几何和黎曼曲面中广为使用的自然度量。 在二维双曲几何中有三种广泛使用的等价表述。其中一个是庞加莱半平面模型,在上半平面上定义一个双曲空间模型。庞加莱圆盘模型在单位圆盘上定义了一个双曲空间模型。圆盘与上半平面通过一个共形映射联系,等距由莫比乌斯变换给出。第三个表述是在穿孔圆盘上,通常表示为与 q-类似(Q-analog)的关系,这种形式不同于前两种。.
查看 体积形式和庞加莱度量
度量
度量是指對於一個物體或是事件的某個性質給予一個數字,使其可以和其他物體或是事件的相同性質比較。度量可以是對一物理量(如長度、尺寸或容量等)的估計或測定,也可以是其他較抽象的特質。 度量通常以一標準或度量衡表示。度量以數字單位的標準來表示,如距離即以多少英里或多少公里來表示。度量是大部份自然科學、技術、及其他社會科學中定量研究的基礎。 度量的過程為估計一數量的多寡和相同類型(如長度、時間、重量等)一單位的多寡之間的比例。度量即為此過程的結果,表示為數字加上一個單位,其中實數為估計的比例。如9公尺,其便為物體長度和長度單位,即公尺之間的比例。不像計數和整數個數個物體一般地可精確知道,每一個度量都是個存在些許不確定性的估計。度量量包括了測量尺度(包括量值)、计量单位及不确定性。透過度量可以比較不同的量測,並且減少誤會。有關度量的科學稱為计量学。.
查看 体积形式和度量
度量张量
在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.
查看 体积形式和度量张量
伪黎曼流形
伪黎曼流形(Pseudo-Riemannian manifold)是一光滑流形,其上有一光滑、对称、点点非退化的(0,2) 張量。此張量稱為伪黎曼度量或伪度量張量。 伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每個正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。 每一個非退化對稱,雙線性形式有一個固定的度量符号(p,q)。這裡p與q記作正特徵值及負特徵值的个数。注意p + q.
查看 体积形式和伪黎曼流形
形变收缩
在拓扑学中,收缩(retraction),顾名思义是将整个空间收缩到一个子空间;形变收缩(deformation retraction)是将空间“连续收缩”成一个子空间的映射。.
查看 体积形式和形变收缩
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
查看 体积形式和当且仅当
体积
積(Volume)是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。體積是物件佔空間的大小。.
查看 体积形式和体积
余切丛
微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密顿函数;这样余切丛可以理解为哈密顿力学讨论的相空间。.
查看 体积形式和余切丛
微分同胚
在數學中,微分同胚是適用於微分流形範疇的同構概念。這是從微分流形之間的可逆映射,使得此映射及其逆映射均為光滑(即無窮可微)的。.
查看 体积形式和微分同胚
微分形式
微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.
查看 体积形式和微分形式
微分几何
微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.
查看 体积形式和微分几何
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 体积形式和微积分学
德拉姆
德拉姆,可能指:.
查看 体积形式和德拉姆
圓柱坐標系
圓柱坐標系(cylindrical coordinate system)是一種三維坐標系統。它是二維極坐標系往 z-軸的延伸。添加的第三個坐標 z 專門用來表示 P 點離 xy-平面的高低。按照國際標準化組織建立的約定 (ISO 31-11) ,徑向距離、方位角、高度,分別標記為 (\rho,\ \phi,\ z) 。 如圖右,P 點的圓柱坐標是 (\rho,\ \phi,\ z) 。.
查看 体积形式和圓柱坐標系
哈尔测度
数学分析中,哈尔测度(Haar measure)是赋予局域紧致拓扑群一个“不变体积”并从而定义那些群上的函数的一个积分的一种方法。 这个测度由匈牙利数学家 Alfréd Haar 于1933年发明 。哈尔测度用于数学分析,数论,群论,表示论,估计理论和遍历理论的很多方面。.
查看 体积形式和哈尔测度
凯勒流形
在数学中,一个凯勒流形(Kähler manifold)是具有满足一个可积性条件的酉结构(一个U(''n'')-结构)的流形。特别地,它是一个黎曼流形 、复流形以及辛流形,这三个结构两两相容。 这个三位一体结构对应于将酉群表示为一个交集: 若没有任何可积性条件,类似的概念是一个殆埃尔米特流形。如果辛结构是可积的(但复结构不要求),则这个概念是殆凯勒流形;如果複结构是可积的(但辛结构不要求),则为埃尔米特流形。 凯勒流形以数学家埃里希·凯勒命名,在代数几何中占有重要的地位:它们是複代数簇的一个微分几何推广。.
查看 体积形式和凯勒流形
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 体积形式和函数
全纯函数
全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.
查看 体积形式和全纯函数
勒贝格测度
数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予一个体积的集合被称为勒贝格可测;勒贝格可测集A的体积或者说测度记作λ(A)。一个值为∞的勒贝格测度是可能的,但是即使如此,在假设选择公理成立时,Rn的所有子集也不都是勒贝格可测的。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。.
查看 体积形式和勒贝格测度
图册 (拓扑学)
在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.
球坐标
#重定向 球座標系.
查看 体积形式和球坐标
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 体积形式和积分
纤维丛
纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).
查看 体积形式和纤维丛
绝对连续
在数学中,绝对连续是一个光滑性质,比连续和一致连续都要严格。函数的绝对连续和测度的绝对连续都有定义。.
查看 体积形式和绝对连续
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 体积形式和行列式
覆疊空間
在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.
查看 体积形式和覆疊空間
黎曼流形
黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.
查看 体积形式和黎曼流形
辛向量空间
数学中,一个辛矢量空间是带有辛形式 ω 的向量空间 V,所谓辛形式即一个非退化斜对称的双线性形式。 确切地说,一个辛形式是一个双线性形式 ω :V × V → R 满足:.
查看 体积形式和辛向量空间
辛流形
数学上,一个辛流形是一个装备了一个闭、非退化2-形式ω的光滑流形,ω称为辛形式。辛流形的研究称为辛拓扑。辛流形作为经典力学和分析力学的抽象表述中的流形的余切丛自然的出现,例如在经典力学的哈密顿表述中,该领域的一个主要原因之一:一个系统的所有组态的空间可以用一个流形建模,而该流形的余切丛描述了该系统的相空间。 一个辛流形上的任何实值可微函数H可以用作一个能量函数或者叫哈密顿量。和任何一个哈密顿量相关有一个哈密顿向量场;该哈密顿向量场的积分曲线是哈密顿-雅可比方程的解。哈密顿向量场定义了辛流形上的一个流场,称为哈密顿流场或者叫辛同胚。根据刘维尔定理,哈密顿流保持相空间的体积形式不变。.
查看 体积形式和辛流形
连通空间
拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.
查看 体积形式和连通空间
霍奇对偶
数学中,霍奇星算子(Hodge star operator)或霍奇对偶(Hodge dual)由苏格兰数学家威廉·霍奇(Hodge)引入的一个重要的线性映射。它定义在有限维定向内积空间的外代数上。.
查看 体积形式和霍奇对偶
雅可比矩阵
在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.
查看 体积形式和雅可比矩阵
G-结构
在微分几何中,对一个给定的结构群 G,n 维流形 M 上一个 G-结构是 M 的切标架丛 FM(或 GL(M))的一个 G-子丛。 G-结构的概念包括了许多流形上其它结构,其中一些是用张量场定义的。例如,对正交群,一个 O(n)-结构定义了一个黎曼度量;而对特殊线性群,一个 SL(n,R)-结构就是一个体积形式;对平凡群,一个 -结构由流形的一个绝对平行化组成。 一些流形上的结构,比如複结构,辛结构,或 凯勒结构,都是 G-结构带上附加的可积性条件。 物理学中的术语是规范群。.
查看 体积形式和G-结构
李群
數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.
查看 体积形式和李群
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
查看 体积形式和欧几里得空间
截面 (纤维丛)
在数学之拓扑学领域中,拓扑空间 B 上纤维丛 π: E → B 的一个截面或横截面(section 或 cross section),是一个连续映射 s: B → E,使得对 x 属于 B 有 π(s(x)).
流 (数学)
在数学中, 一个流用数学方式形式化了“取决于时间的变化”的一般想法,这经常出现在工程学, 物理学和常微分方程的研究中。非正式地说,如果 x(t) 是某一系统的坐标连续表现为一个 t 的函数,那么x(t) 是一个流。更形式地说,流是单参数群在一个集合上的群作用。 向量流的概念,即由一个向量场确定的流,出现于微分拓扑、黎曼流形和李群诸多领域。向量流的特例包括测地流、哈密顿流、里奇流、平均曲率流以及 Anosov 流。.
查看 体积形式和流 (数学)
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 体积形式和流形
测度
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.
查看 体积形式和测度
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 体积形式和数学
拉回
拉回(pullback)是数学中一个基本概念,涉及到两个不同但关联的程序:预复合与纤维积。与之对偶的概念是前推。.
查看 体积形式和拉回
曲面
在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.
查看 体积形式和曲面
1-形式
在线性代数中,1-形式(one-form)是向量空间上的一種线性泛函。1-形式在这种向量空间语境中的使用方式,通常区别於高阶的多重线性泛函中的1-形式。细节参见线性泛函。 在微分几何中,可微流形上的1-形式是余切丛的一个光滑截面。具体说来,流形 M 上的1-形式是M 的切丛的全空间到 R 的一个光滑映射,限制在每个纤维上是切空间上的线性泛函。用符号表示, 这里 αx 是线性的。 1-形式经常局部地描述,特别是在一个局部坐标中。在一个局部坐标系中,1-形式是坐标的微分的线性组合: 这里 fi 是光滑函数。注意这里使用上指标,不要与幂混淆。从这种观点来看,一个 1-形式从一个坐标系变到另一个时有共变变换法则。从而一个 1-形式是秩 1 共变张量场。.
查看 体积形式和1-形式
另见
微分形式
行列式
- 体积形式
- 克萊姆法則
- 判别式
- 子式和余子式
- 希尔伯特矩阵
- 循环矩阵
- 拉普拉斯展开
- 斯莱特行列式
- 朗斯基行列式
- 柯西-比内公式
- 格拉姆矩阵
- 結式
- 范德蒙矩陣
- 萨吕法则
- 行列式
- 阿达马不等式
- 雅可比矩阵
- 非奇异方阵
黎曼几何
- 伪黎曼流形
- 体积形式
- 克里斯托费尔符号
- 共形映射
- 共變和反變
- 几何化猜想
- 列维-奇维塔联络
- 协变微商
- 基灵矢量场
- 大圆
- 山邊問題
- 常曲率
- 平行移动
- 庞加莱度量
- 度量张量
- 截面曲率
- 拉普拉斯-贝尔特拉米算子
- 指數映射 (黎曼幾何)
- 数量曲率
- 旋量丛
- 爱因斯坦求和约定
- 第二基本形式
- 等距同构
- 简正坐标
- 絕妙定理
- 纳什嵌入定理
- 芬斯勒流形
- 調和映射
- 里奇曲率張量
- 里奇流
- 霍奇对偶
- 音乐同构
- 高斯映射
- 黎曼几何
- 黎曼曲率張量
- 黎曼流形
亦称为 体积元。