徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

内乘

指数 内乘

在数学中,内乘(interior product,或译内积)是光滑流形上的微分形式外代数上一个次数为 −1 导子,定义为微分形式与一个向量场的缩并。从而如果 X 是流形 M 上一个向量场,那么 是将一个 p-形式 ω 映为 (p−1)-形式 iXω,由性质 所定义,对任何向量场 X1,..., Xp−1。本质上来说,内乘可以定义在向量空间与外代数上,即只与流形的一点有关。 内乘也称为内乘法(interior 或 inner multiplication),或内导数(inner derivative 或 derivation)。 一些作者使用字母 i 代替 \iota;内乘有时也写成 \iota(X) 或者 X \lrcorner \omega.

9 关系: 外代数外微分导子微分形式微分流形内积辛几何李导数数学

外代数

外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.

新!!: 内乘和外代数 · 查看更多 »

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

新!!: 内乘和外微分 · 查看更多 »

导子

在抽象代数中,一个导子(derivation)是代数上的函数,推广了导数算子的某些特征。明确地,给定一个环或域 k 上一个代数 A,一个 k-导子是一个 k-线性映射 D: A → A,满足莱布尼兹法则: 更一般地,从 A 映到 A-模 M 的一个 k-线性映射 D,满足莱布尼兹法则也称为一个导子。A 所有到自身的 k-导子集合记为 Derk(A)。从 A 到 A-模 M 的所有 k-导子集合记为 Derk(A,M)。 导子在不同的数学领域以许多不同的面貌出现。关于一个变量的偏导数是 Rn 上实值可微函数组成的代数上的一个 R-导子。关于一个向量场的李导数是可微流形上可微函数代数上的 R-导子;更一般地,它是流形上张量代数的导子。Pincherle 导数是一个抽象代数上的导子的例子。如果代数 A 非交换,则关于 A 中一个元素的交换子定义了 A 到自身的线性映射,这是 A 的一个 k-导子。一个代数 A 装备一个特定的导子 d 组成了一个微分代数,这自身便是一些研究领域的一个重要对象,比如微分伽罗瓦理论。.

新!!: 内乘和导子 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 内乘和微分形式 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 内乘和微分流形 · 查看更多 »

内积

#重定向 点积.

新!!: 内乘和内积 · 查看更多 »

辛几何

辛几何(Symplectic geometry),也叫辛拓扑(Symplectic topology),是微分几何的一个分支。其研究對象為辛流形,亦即带有闭非退化2-形式的微分流形。辛拓扑源于经典力学的哈密顿表述,其中特定经典系统的相空间有辛流形的结构。 辛拓扑和研究有非退化对称2阶张量(称为度量张量)的流形的黎曼几何有一些相似和不同之处。不像黎曼的情况,辛流形没有像曲率那样的局部不变量。这是达布定理的一个结果,表明每一对辛流形是局部同构的。另一个和黎曼几何的区别是不是所有的微分流形可以接受一个辛形式;有一些特定的拓扑限制。首先,流形必须是偶数维的。辛拓扑的很多工作就是以研究哪些流形可以有辛结构为中心的。 每个凯勒流形也是一个辛流形。直到1970年代,辛专家们还不确信是否有任何紧非Kähler辛流形存在,但从那以后又很多例子被构造出来(第一个由William Thurston给出);特别的,Robert Gompf证明每个有限表示群都可以作为辛4维流形的基本群出现,这和凯勒的情形完全不同。 可以说大部分辛流形都是非凯勒的;所以没有和辛形式相容的可积複结构。但是 Mikhail Gromov给出了一个重要的发现,就是辛流形可以接受很多相容的殆複结构,所以它们满足複流形的所有假设,"除了"坐标变换函数必须是全纯的这一条。 以几乎複结构相容的映射到辛流形的黎曼曲面称为伪全纯曲线,格罗莫夫证明了该类曲线的紧致性定理;这个结构导致了辛拓扑一个很大的子学科的发展。从格罗莫夫的理论产生的结果包括关于球到柱的辛嵌入的格罗莫夫非压缩定理,和关于哈密顿流的不动点的个数的阿尔诺德的一个猜想的证明。这是由从Andreas Floer开始的几个研究者(逐步推广到更一般的情形)所证明的,Floer用格罗莫夫的方法引入了现在称为Floer同调的概念。 伪全纯曲线也是辛不变量的一个来源,这种不变量称为Gromov-Witten不变量,原则上可以用来区分两个不同的辛流形。.

新!!: 内乘和辛几何 · 查看更多 »

李导数

在微分幾何中,李导数(Lie derivative)是一個以索甫斯·李命名的算子,作用在流形上的張量場,向量場或函数,將該張量沿著某個向量場的流做方向導數。因為該作用在座標變換下保持不變,因此,該李導數在一般的流形上都是定義良好的。 所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。 李导数用向量场表示,这些向量场可看作M上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,M上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。.

新!!: 内乘和李导数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 内乘和数学 · 查看更多 »

重定向到这里:

嘉当公式

传出传入
嘿!我们在Facebook上吧! »