目录
區間
在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.
查看 朗斯基行列式和區間
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 朗斯基行列式和向量空间
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
查看 朗斯基行列式和导数
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
查看 朗斯基行列式和微分方程
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 朗斯基行列式和函数
克萊姆法則
克萊姆法則(Cramer's rule),又稱為克拉瑪公式,是一個線性代數中的定理,用行列式來計算出線性等式組中的所有解。這個定理因加百列·克萊姆(1704年 - 1752年)的卓越使用而命名。在計算上,並非最有效率之法,所以在很多條等式的情況中沒有廣泛應用。不過,這定理在理論性方面十分有用。.
查看 朗斯基行列式和克萊姆法則
線性無關
在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.
查看 朗斯基行列式和線性無關
线性微分方程
线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程: 其中方程左侧的微分算子\mathcal是线性算子,是要解的未知函数,方程的右侧是一个已知函数。如果() 0,那么方程(*)的解的线性组合仍然是解,所有的解构成一个向量空间,称为解空间。这样的方程称为齐次线性微分方程。当不是零函数时,所有的解构成一个仿射空间,由对应的齐次方程的解空间加上一个特解得到。这样的方程称为非齐次线性微分方程。线性微分方程可以是常微分方程,也可以是偏微分方程。.
线性方程组
线性方程组是数学方程组的一种,它符合以下的形式: 其中的a_, \, a_以及b_, \, b_等等是已知的常数,而x_, \, x_等等则是要求的未知数。 如果用线性代数中的概念来表达,则线性方程组可以写成: 這裡的A是m×n 矩陣,x是含有n个元素列向量,b是含有m 个元素列向量。 A.
查看 朗斯基行列式和线性方程组
绝对值
絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.
查看 朗斯基行列式和绝对值
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 朗斯基行列式和行列式
连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.
查看 朗斯基行列式和连续函数
波兰
波兰共和国(Rzeczpospolita Polska),简称波兰,是位於中欧的共和制国家,北面濒临波罗的海,西面与德国接壤,南部与捷克和斯洛伐克为邻,乌克兰和白俄罗斯在东,东北部和立陶宛及俄罗斯加里宁格勒州接壤。面積312,679平方公里,位居歐洲第十;人口約3,863萬人,位居歐洲第九。目前為欧盟、北约、联合国、经济合作与发展组织、世贸组织等國際組織的成員。.
查看 朗斯基行列式和波兰
方阵
方阵有以下几种解释:.
查看 朗斯基行列式和方阵
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 朗斯基行列式和数学
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
查看 朗斯基行列式和数学家
另见
常微分方程
- Rayleigh-Plesset方程式
- 休恩函数
- 伯努利微分方程
- 俄勒冈振子方程
- 克萊羅方程
- 全微分方程
- 分離變數法
- 切比雪夫方程
- 刘维尔公式
- 動態模擬
- 參數振盪器
- 布鲁塞尔振子
- 希爾伯特第二十一問題
- 希爾微分方程
- 常微分方程
- 广义超几何函数
- 指數增長
- 摄动理论
- 施图姆-刘维尔理论
- 朗斯基行列式
- 杜芬振子
- 柯西-利普希茨定理
- 柯西-歐拉方程
- 格朗沃尔不等式
- 歐拉-拉格朗日方程
- 皮亚诺存在性定理
- 积分因子
- 简正模
- 自治系统 (数学)
- 自激振荡
- 艾里函数
- 范德波尔振荡器
- 莱恩-埃姆登方程
- 諧振子
- 超几何函数
- 边值问题
- 阻尼
- 隆梅尔函数
- 雜散振盪
- 马丢函数
波兰科技
- 10TP坦克
- PSR B1257+12
- PSR B1257+12 A
- PSR B1257+12 B
- PT-91主战坦克
- ViS wz. 35手槍
- 亞捷隆大學
- 华沙理工大学
- 巴拿赫空间
- 朗斯基行列式
- 柯迪萊夫斯基雲
- 柴可拉斯基法
- 波兰表示法
- 白象 (建筑物)
- 謝爾賓斯基三角形
- 谢尔宾斯基地毯
- 谢尔宾斯基数
- 逆波兰表示法
- 钋
- 雷霆便攜式防空導彈