目录
20 关系: 區間,实数,不等式,常微分方程,微分,微分方程,微积分基本定理,唯一量化,内部,函数,积分方程,美国,瑞典,连续函数,链式法则,除法定则,柯西-利普希茨定理,指数函数,数学,数学家。
- 常微分方程
- 概率不等式
- 隨機微分方程
區間
在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.
查看 格朗沃尔不等式和區間
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 格朗沃尔不等式和实数
不等式
不等式是數學名詞,是指表示二個量之間不等的敘述。一般常會表示成二個表示式表示要探討的量,中間再加上不等關係的符號,表示兩者的關係。以下是一些不等式的例子: 有些作者認為不等式只能用來表示中間有出現不等號≠的關係式.
查看 格朗沃尔不等式和不等式
常微分方程
在数学分析中,常微分方程(ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。 很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s 和时间 t 的关系就可以表示为如下常微分方程: 其中 m 是物体的质量,f(s) 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s,它只以时间 t 为自变量。.
微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.
查看 格朗沃尔不等式和微分
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
查看 格朗沃尔不等式和微分方程
微积分基本定理
微积分基本定理描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,表明不定积分是微分的逆运算。這一部分定理的重要之處在於它保證了某連續函數的原函數的存在性。 定理的第二部分,称为微积分第二基本定理或“牛顿-莱布尼茨公式”,表明定积分可以用无穷多个原函数的任意一个来计算。这一部分有很多实际应用,这是因为它大大简化了定积分的计算。 该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。 微积分基本定理表明,一个变量在一段时间之内的无穷小变化之和,等于该变量的净变化。 我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用莱布尼兹记法: 整理,得 根据以上的推理,x的变化──\Delta x,是dx的无穷小变化之和。它也等于导数和时间的无穷小乘积之和。这个无穷的和,就是积分;所以,一个函数求导之后再积分,得到的就是原来的函数。我们可以合理地推断,这个运算反过来也成立,积分之后再求导,得到的也是原来的函数。.
唯一量化
在谓词逻辑和依赖于它的技术领域中,唯一量化或唯一存在量化,尝试形式化对于“精确”的一个事物,或对于精确的特定类型的一个事物为真的某个事物的概念。唯一量化的一般化是。 例如: 符号化写为: 符号 ∃! 叫做“唯一量词”或“唯一存在量词”。它通常读做“有一个且只有一个”,“存在唯一一个” (存在着这个符号的在文法上和如何阅读上的多个变体)。.
查看 格朗沃尔不等式和唯一量化
内部
数学上,特别是在拓扑学中,拓扑空间内点集 S 的内部(interior,又稱開核 open kernel)含有所有直观上“不在 S 的边界上”的 S 的点。S 的内部中的点称为 S 的内点。 等价地,S 的内部是 S 补集的闭包的补集。内部的概念在很多情况下和闭包的概念对偶。 一个集合的外部是它补集的内部,等同于它闭包的补集;它包含既不在集合内,也不在边界上的点。一个子集的内部、边界和外部一同将整个空间分为三块(或者更少,因為這三者有可能是空集)。内部和外部总是开的,而边界总是闭的。没有内部的集合叫做边缘集。.
查看 格朗沃尔不等式和内部
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 格朗沃尔不等式和函数
积分方程
积分方程是含有对未知函数的积分运算的方程,与微分方程相对。许多数学物理问题需通过积分方程或微分方程求解。 积分方程最基本的形式为第一类弗里德霍姆方程: 其中,f和K已知,K又称核函数,\phi为所求未知函数。积分上下限a,b为常量。 如未知函数同时出现在积分符号内外,则该方程称作第二类弗里德霍姆方程: \lambda作为未知因子,起到与线性代数中特征值类似的作用。 如果积分上限或下限为变量,则该方程称为伏尔泰拉方程。第一类和第二类伏尔泰拉方程有下述形式: 如果f始终为0,以上所有方程称为齐次,否则,称为非齐次。.
查看 格朗沃尔不等式和积分方程
美国
美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).
查看 格朗沃尔不等式和美国
瑞典
典王国(Konungariket Sverige)是一个位于斯堪地纳维亚半岛的北歐国家,首都为斯德哥尔摩。西鄰挪威,东北与芬兰接壤,西南濒临斯卡格拉克海峡和卡特加特海峡,東邊為波罗的海與波的尼亞灣。即瑞典和與丹麦、德国、波兰、俄罗斯、立陶宛、拉脫維亞和爱沙尼亚隔海相望,於西南通过厄勒海峽大桥与丹麦相连。瑞典於1995年加入欧洲联盟。 瑞典面积为449,964平方公里,为北歐第一大国家,人口1000万,第三页 - 于2007年7月10日查阅。。64%的國土由森林覆蓋,人口密度低,只有都會地區人口密度較高,84%的人口居住在只佔国土面积1.3%的城市裡。瑞典是一个現代、自由與民主的高度发达国家,其公民享有高质的生活,政府亦非常注重环保。 瑞典是传统的铁、铜和木材出口国,其水资源也很丰富,但是石油和煤矿十分匮乏。隨著運輸以及通訊的進步,這些自然資源也能夠更大規模地從各地開採,尤其是木材與鐵礦。經濟自由與教育普及而讓瑞典開始歷經快速的工業化,並從1890年代開始發展製造業。20世紀瑞典成為一個福利國家。 1397年,瑞典與丹麦和挪威一起所組成了卡爾馬聯合(芬兰此時還是瑞典王國的一部分)。瑞典於16世纪初脫離卡爾馬聯合,並且與鄰國進行了多年的戰爭,尤其是與俄羅斯以及從未完全承認瑞典已經離開了卡爾瑪聯合的丹麥-挪威聯合。17世纪時瑞典藉由戰爭擴張領土,成為了強權國家,其領土面积為目前的兩倍之大。1809年瑞典失去了芬蘭,也不再具有強權地位。之后,瑞典沒有再參與過戰爭。 現今,瑞典被視為極力追求人权和平等的国家之一。瑞典二戰後設立許多社會福利的制度,並在聯合國開發計劃署的人类发展指数中通常名列前茅。.
查看 格朗沃尔不等式和瑞典
连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.
查看 格朗沃尔不等式和连续函数
链式法则
链式法则或鏈鎖定則(英语:chain rule),是求复合函数导数的一个法则。设f 和g 为两个关于x 可导函数,则复合函数 (f \circ g)(x)的导数 (f \circ g)'(x)为:.
查看 格朗沃尔不等式和链式法则
除法定则
法定则或商定則是数学中关于两个函数的商的导数的一个计算定则。 若已知两个可導函数g,h及其导数g',h',且h(x)≠0,则它们的商 的导数为:.
查看 格朗沃尔不等式和除法定则
柯西-利普希茨定理
在数学中,柯西-利普希茨定理(Cauchy-Lipschitz Theorem),又称皮卡-林德勒夫定理(Picard-Lindelöf Theorem),保证了一階常微分方程的局部解以至最大解的存在性和唯一性。此定理最早由奧古斯丁·路易·柯西于1820年发表,但直到1868年,才由鲁道夫·利普希茨给出确定的形式。另一个很常见的叫法是皮卡-林德勒夫定理,得名于数学家埃米尔·皮卡和恩斯特·林德勒夫。.
指数函数
指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.
查看 格朗沃尔不等式和指数函数
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 格朗沃尔不等式和数学
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
查看 格朗沃尔不等式和数学家
另见
常微分方程
- Rayleigh-Plesset方程式
- 休恩函数
- 伯努利微分方程
- 俄勒冈振子方程
- 克萊羅方程
- 全微分方程
- 分離變數法
- 切比雪夫方程
- 刘维尔公式
- 動態模擬
- 參數振盪器
- 布鲁塞尔振子
- 希爾伯特第二十一問題
- 希爾微分方程
- 常微分方程
- 广义超几何函数
- 指數增長
- 摄动理论
- 施图姆-刘维尔理论
- 朗斯基行列式
- 杜芬振子
- 柯西-利普希茨定理
- 柯西-歐拉方程
- 格朗沃尔不等式
- 歐拉-拉格朗日方程
- 皮亚诺存在性定理
- 积分因子
- 简正模
- 自治系统 (数学)
- 自激振荡
- 艾里函数
- 范德波尔振荡器
- 莱恩-埃姆登方程
- 諧振子
- 超几何函数
- 边值问题
- 阻尼
- 隆梅尔函数
- 雜散振盪
- 马丢函数