徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

摄动理论

指数 摄动理论

摄动理论使用一些特別的数学方法來對於很多不具精确解的问题給出近似解,这些方法从相关的較簡單问题的精确解开始入手。摄动理论將原本問題分為具有精確解的較簡單部分與不具精確解的微扰部分。摄动理论适用的问题通常具有以下性質:通过加入一个微扰项於較簡單部分的數學表述,可以計算出整個問題的近似解。 摄动理论计算出来的解答通常会表达为一个微小参数的冪級數。摄动理论解答与精确解之间的差别,可以用这微小参数来做数量比较。冪級數的第一个项目是精确解的解答。后面的项目描述解答的修正。这修正是因为精确解与原本问题的「完全解」之间的误差而产生的。更正式地,完全解A\,\!的近似可以表達为一个級數: 在這例子裏,A_0\,\!是簡單又有「精確解」的問題的精確解,A_1,\, A_2, \,\!代表由某种系统程序反覆地找到的高阶项目修正。因为\epsilon\,\!的值很微小,这些高阶项目修正应该会越来越不重要。.

11 关系: 偏微分方程奇异摄动常微分方程微分算子矩阵简并度线性代数量子力学本征值本徵函數数学

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

新!!: 摄动理论和偏微分方程 · 查看更多 »

奇异摄动

奇异摄动问题是指数学上一个含有小参数的问题,但不能够直接以把小参数设为零来求得所有近似解的问题。在描述奇异摄动问题的方程里,小参数作为系数出现在含有最高阶次方或导数项里,如果按照常规摄动法把小参数设为零,将会导致方程降阶从而不能得到所有的近似解。奇异摄动的来源是这类问题里存在多个尺度。为了求得在每个尺度上的有效近似解,需要将方程用不同尺度规范化以得到新的方程。而新的方程则可以用常规摄动法来求近似解。奇异摄动方法开端于普朗特的边界层理论。.

新!!: 摄动理论和奇异摄动 · 查看更多 »

常微分方程

在数学分析中,常微分方程(ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。 很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s 和时间 t 的关系就可以表示为如下常微分方程: 其中 m 是物体的质量,f(s) 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s,它只以时间 t 为自变量。.

新!!: 摄动理论和常微分方程 · 查看更多 »

微分算子

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。 当然有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性的情形。.

新!!: 摄动理论和微分算子 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 摄动理论和矩阵 · 查看更多 »

简并度

#重定向 简并能级.

新!!: 摄动理论和简并度 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 摄动理论和线性代数 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 摄动理论和量子力学 · 查看更多 »

本征值

#重定向 特征值和特征向量.

新!!: 摄动理论和本征值 · 查看更多 »

本徵函數

在数学中,函数空间上定义的线性算子 A 的本征函数(Eigenfunction,又稱--)就是对该空间中任意一个非零函数 f 进行变换仍然是函数 f 或者其标量倍数的函数。更加精确的描述就是 \mathcal A f.

新!!: 摄动理论和本徵函數 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 摄动理论和数学 · 查看更多 »

重定向到这里:

常微分方程摄动方法微擾理論微扰论

传出传入
嘿!我们在Facebook上吧! »