我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

微分方程和格朗沃尔不等式

快捷方式: 差异相似杰卡德相似系数参考

微分方程和格朗沃尔不等式之间的区别

微分方程 vs. 格朗沃尔不等式

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。. 在数学中,格朗沃尔引理或格朗沃尔不等式说明了对于满足一定的微分方程或积分方程的函数,有相应的关于此微分方程或积分方程的不等式。格朗沃尔不等式有两种形式,分别是积分形式和微分形式。积分形式下的不等式可以有几种不同的写法。 格朗沃尔不等式常常被用来估计常微分方程的解的取值范围。比如,它可以用来证明初值问题的解的唯一性(见柯西-利普希茨定理)。 格朗沃尔不等式的名称来自多玛·哈肯·格朗沃尔。格朗沃尔是一位瑞典的数学家,后来移居美国。 格朗沃尔不等式的微分形式首先由格朗沃尔在1919年证明T.

之间微分方程和格朗沃尔不等式相似

微分方程和格朗沃尔不等式有(在联盟百科)4共同点: 常微分方程函数柯西-利普希茨定理数学

常微分方程

在数学分析中,常微分方程(ordinary differential equation,簡稱ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。 很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s 和时间 t 的关系就可以表示为如下常微分方程: 其中 m 是物体的质量,f(s) 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s,它只以时间 t 为自变量。.

常微分方程和微分方程 · 常微分方程和格朗沃尔不等式 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

函数和微分方程 · 函数和格朗沃尔不等式 · 查看更多 »

柯西-利普希茨定理

在数学中,柯西-利普希茨定理(Cauchy-Lipschitz Theorem),又称皮卡-林德勒夫定理(Picard-Lindelöf Theorem),保证了一階常微分方程的局部解以至最大解的存在性和唯一性。此定理最早由奧古斯丁·路易·柯西于1820年发表,但直到1868年,才由鲁道夫·利普希茨给出确定的形式。另一个很常见的叫法是皮卡-林德勒夫定理,得名于数学家埃米尔·皮卡和恩斯特·林德勒夫。.

微分方程和柯西-利普希茨定理 · 柯西-利普希茨定理和格朗沃尔不等式 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

微分方程和数学 · 数学和格朗沃尔不等式 · 查看更多 »

上面的列表回答下列问题

微分方程和格朗沃尔不等式之间的比较

微分方程有82个关系,而格朗沃尔不等式有20个。由于它们的共同之处4,杰卡德指数为3.92% = 4 / (82 + 20)。

参考

本文介绍微分方程和格朗沃尔不等式之间的关系。要访问该信息提取每篇文章,请访问: