目录
分子轨道
分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.
查看 斯莱特行列式和分子轨道
哈特里-福克方程
哈特里-福克方程(Hartree–Fock equation),又称为HF方程,是一个应用变分法计算波函数的方程式,是量子物理、凝聚態物理學、量子化学中最重要的方程之一。HF方程形式上是单电子本征方程,求得的本征态是单电子波函数,即分子轨道。以HF方程为核心的数值计算方法称为“哈特里-福克方法”(Hartree–Fock method)。 基于分子轨道理论的所有量子化学计算方法都是以HF方法为基础的。鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程被视为现代量子化学的基石。.
线性组合
線性組合(Linear combination)是線性代數中具有如下形式的表达式。其中v_i为任意类型的项,a_i为标量。這些純量稱為線性組合的係數或權。.
查看 斯莱特行列式和线性组合
组态相互作用方法
组态相互作用方法 (CI) 是一种后Hartree-Fock方法,求解的是多电子体系在波恩-奥本海默近似下的非相对论薛定谔方程。“构型相关”有两层含义:“构型" 从数学角度简洁的表述了它是描述波函的斯雷特行列式的线性耦合。根据轨道占据的规则 (例如, (1s)2(2s)2(2p)1...),“相关”的意思是不同电子构型(态)之间的混合(相互作用)。由于CI计算的CPU计算时间很长以及需要巨大的硬件资源,所以这个方法只能用于相对较小的体系。 与Hartree-Fock方法相比,为了计入电子相关作用,CI方法使用了由组态态函数(CSF)线性耦合得到的变分波函数,而这些组态态函数是由自旋轨道(用上标SO表示)构建的。 在这里, Ψ通常是指体系的电子基态。如果展开项包括了合适对称性的所有可能的 CSF, 则就是完全组态相互作用,它可以准确的求解由单粒子基组限定的空间内的电子薛定谔方程。上述展开项中的第一个就是Hartree-Fock行列式.
置換
排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.
查看 斯莱特行列式和置換
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 斯莱特行列式和行列式
量子化学
量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。.
查看 斯莱特行列式和量子化学
泡利不相容原理
在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。.
波函数
在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.
查看 斯莱特行列式和波函数
另见
理论化学
- 不可约表示
- 从头计算法
- 兰纳-琼斯势
- 分子对称性
- 分子轨道
- 半經典物理學
- 反應坐標
- 哈密顿算符
- 哈特里-福克方程
- 埃瓦尔德求和
- 基组
- 多体微扰理论
- 完全组态相互作用方法
- 库仑算符
- 库普曼斯定理
- 斯莱特行列式
- 理论化学
- 电子排布
- 立方烷
- 笼效应
- 等电子体
- 能级
- 计算化学
- 馬德隆常數
行列式
- 体积形式
- 克萊姆法則
- 判别式
- 子式和余子式
- 希尔伯特矩阵
- 循环矩阵
- 拉普拉斯展开
- 斯莱特行列式
- 朗斯基行列式
- 柯西-比内公式
- 格拉姆矩阵
- 結式
- 范德蒙矩陣
- 萨吕法则
- 行列式
- 阿达马不等式
- 雅可比矩阵
- 非奇异方阵
计算化学
- Folding@home
- Phi相關係數
- 从头计算法
- 元胞列表
- 兰纳-琼斯势
- 分子力学
- 分子动力学
- 分子建模
- 分子挖掘
- 分子轨道
- 化学信息学
- 化学数据库
- 化学标记语言
- 化学计量学
- 半經典物理學
- 反應坐標
- 哈密顿算符
- 哈特里-福克方程
- 埃瓦尔德求和
- 基组
- 多体微扰理论
- 完全组态相互作用方法
- 定量构效关系
- 库仑算符
- 库普曼斯定理
- 戴维森校正
- 摄动理论
- 斯莱特行列式
- 能级
- 自由能微扰
- 计算化学
- 韦尔莱表
- 高斯轨道
亦称为 Slater行列式。