我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

波函数

指数 波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

目录

  1. 62 关系: 埃尔温·薛定谔半导体可觀察量复数复数 (数学)威廉·哈密頓微积分学分離變數法哥本哈根詮釋哈密頓-雅可比方程哈密顿算符哈特里-福克方程函数光学克莱因-戈尔登方程勞侖茲協變性矩陣力學玻尔模型純量勢纳米晶体线性代数线性关系统计学经典力学维尔纳·海森堡电子無限深方形阱物理光學物質波狭义相对论狄拉克方程式角频率马克斯·玻恩譜線质量路易·德布罗意能量阿諾·索末菲薛定谔方程量子力学量子態自旋雙縫實驗概率機率密度函數機率幅氫原子決定論波动方程波包... 扩展索引 (12 更多) »

  2. 振动和波

埃尔温·薛定谔

埃尔温·魯道夫·尤則夫·亞歷山大·薛定諤(Erwin Rudolf Josef Alexander Schrödinger,),生于奥地利维也纳,是奥地利一位理论物理学家,量子力学的奠基人之一。1926年他提出薛定谔方程,为量子力学奠定了坚实的基础。他想出薛定谔猫思想實驗,试图证明量子力学在宏观条件下的不完备性。 1933年,因為“发现了在原子理论裏很有用的新形式”,薛定諤和英国物理学家保罗·狄拉克共同获得了诺贝尔物理学奖,以表彰他们发现了薛定谔方程和狄拉克方程。 他的父亲鲁道夫·薛定諤是生产油布和防水布的工厂主同时也是一名园艺家。他的母亲格鲁吉亚娜·艾米莉·布兰达是维也纳科技大学的教授亚历山大·鲍尔的女儿。.

查看 波函数和埃尔温·薛定谔

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

查看 波函数和半导体

可觀察量

在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。.

查看 波函数和可觀察量

复数

#重定向 复数 (数学).

查看 波函数和复数

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

查看 波函数和复数 (数学)

威廉·哈密頓

威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.

查看 波函数和威廉·哈密頓

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

查看 波函数和微积分学

分離變數法

數學上,分離變數法是一種解析常微分方程或偏微分方程的方法。使用這方法,可以藉代數來將方程式重新編排,讓方程式的一部分只含有一個變數,而剩餘部分則跟此變數無關。這樣,隔離出的兩個部分的值,都分別等於常數,而兩個部分的值的代數和等於零。.

查看 波函数和分離變數法

哥本哈根詮釋

哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.

查看 波函数和哥本哈根詮釋

哈密頓-雅可比方程

#重定向 哈密頓-雅可比方程式.

查看 波函数和哈密頓-雅可比方程

哈密顿算符

量子力學中,哈密頓算符(Hamiltonian,缩写符号:H或\hat) 為一個可觀測量,對應於系統的總能量。一如其他所有算符,哈密頓算符的譜為測量系統總能是所有可能結果的集合。如同其他自伴算符,哈密頓算符的譜可以透過譜測度(spectral measure)被分解,成為純點(pure point)、絕對連續(absolutely continuous)、奇點(singular)三種部分。純點譜與本徵向量相應,而後者又對應到系統的束縛態(bound states)。絕對連續譜則對應到自由態(free states)。奇點譜則很有趣地由物理學上不可能的結果所組成。舉例來說,考慮有限深方形阱的情形,其許可了具有離散負能量的束縛態,以及具有連續正能量的自由態。 哈密頓算符產生了量子態的時間演化。若 \left| \psi (t) \right\rangle 為在時間 t 的系統狀態, 其中 \hbar 為約化普朗克常數。此方程式為薛丁格方程式。(其與哈密顿-雅可比方程具有相同形式,也因為此,H 冠有哈密頓之名。)若給定系統在某一初始時間(t.

查看 波函数和哈密顿算符

哈特里-福克方程

哈特里-福克方程(Hartree–Fock equation),又称为HF方程,是一个应用变分法计算波函数的方程式,是量子物理、凝聚態物理學、量子化学中最重要的方程之一。HF方程形式上是单电子本征方程,求得的本征态是单电子波函数,即分子轨道。以HF方程为核心的数值计算方法称为“哈特里-福克方法”(Hartree–Fock method)。 基于分子轨道理论的所有量子化学计算方法都是以HF方法为基础的。鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程被视为现代量子化学的基石。.

查看 波函数和哈特里-福克方程

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 波函数和函数

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

查看 波函数和光学

克莱因-戈尔登方程

克莱因-戈尔登方程式(Klein-Gordon equation)是相对论量子力学和量子场论中的最基本方程式,它是薛定谔方程式的狭义相对论形式,用于描述自旋为零的粒子。克莱因-戈尔登方程式是由瑞典理论物理学家奥斯卡·克莱因和德国人沃尔特·戈尔登于二十世纪二三十年代分别独立推导得出的。.

查看 波函数和克莱因-戈尔登方程

勞侖茲協變性

物理學中,勞侖茲協變性(Lorentz covariance)是時空的一個關鍵性質,出自於狹義相對論,適用於全域性的場合。局域勞侖茲協變性(Local Lorentz covariance)所指為僅「局域」於各點附近無限小時空區域的勞侖茲協變性,此則出於廣義相對論。勞侖茲協變性有兩個不同、但緊密關聯的意義:.

查看 波函数和勞侖茲協變性

矩陣力學

矩陣力學是量子力學其中一種的表述形式,它是由海森堡、玻恩和约尔当(P.

查看 波函数和矩陣力學

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

查看 波函数和玻尔模型

純量勢

純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.

查看 波函数和純量勢

纳米晶体

纳米晶体指晶粒为纳米尺寸的晶体材料,或具有晶体结构的纳米颗粒。一般晶粒尺寸小于100nm的材料才称为纳米晶体。纳米晶体具有很重要的研究价值。纳米晶体的电学和热力学性质显现出很强的尺寸依赖性,从而可以通过细致的制造过程来控制这些性质。纳米晶体能够提供单体的晶体结构,通过研究这些单体的晶体结构可以提供信息来解释相似材料的宏观样品的行为,而不用考虑复杂的晶界和其他晶体缺陷。尺寸小于10纳米的半导体纳米晶体通常被称为量子点。 用沸石制成的纳米晶体可以用作把原油转换成柴油的过滤器,比传统炼油方法要便宜。 纳米晶体制作的光电池具有便宜高效的特点。.

查看 波函数和纳米晶体

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

查看 波函数和线性代数

线性关系

#重定向 線性關係.

查看 波函数和线性关系

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

查看 波函数和统计学

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

查看 波函数和经典力学

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

查看 波函数和维尔纳·海森堡

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

查看 波函数和电子

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

查看 波函数和無限深方形阱

物理光學

#重定向 物理光学.

查看 波函数和物理光學

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

查看 波函数和物質波

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

查看 波函数和狭义相对论

狄拉克方程式

論物理中,相對於薛丁格方程式之於非相對論量子力學,狄拉克方程式是相對論量子力學的一項描述自旋-½粒子的波函數方程式,由英国物理学家保羅·狄拉克於1928年建立,不帶矛盾地同時遵守了狹義相對論與量子力學兩者的原理,实则为薛定谔方程的洛伦兹协变式。這條方程預言了反粒子的存在,隨後1932年由卡爾·安德森發現了正电子(positron)而證實。 帶有自旋-½的自由粒子的狄拉克方程式的形式如下: 其中m \,是自旋-½粒子的質量,\mathbf與t分別是空間和時間的座標。.

查看 波函数和狄拉克方程式

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

查看 波函数和角频率

马克斯·玻恩

克斯·玻恩(Max Born,),德国物理学家与数学家,对量子力学的发展非常重要,同时在固体物理学及光学方面也有所建树。此外,他在20世纪20年代至30年代间培养了大量知名物理学家。1954年,玻恩因“量子力学方面的基础性研究,特别是给出波函数的统计解释”而获得诺贝尔物理学奖。.

查看 波函数和马克斯·玻恩

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

查看 波函数和譜線

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

查看 波函数和质量

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

查看 波函数和路易·德布罗意

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

查看 波函数和能量

阿諾·索末菲

阿諾德·索末菲 (Arnold Sommerfeld, ),全名Arnold Johannes Wilhelm Sommerfeld,德國物理學家,量子力學與原子物理學的開山始祖之一。他發現了精細結構常數,一個關於電磁相互作用的很重要的常數。他也是一位傑出的老師,教導和培養了很多優秀的理論物理學家。 索末菲是目前為止教導過最多諾貝爾物理學獎得主的人,他首先提出第二量子數(角量子數)和第四量子數(自旋量子數),並且提出精細結構常數和開創了X射線波動理論。.

查看 波函数和阿諾·索末菲

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

查看 波函数和薛定谔方程

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 波函数和量子力学

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

查看 波函数和量子態

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

查看 波函数和自旋

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

查看 波函数和雙縫實驗

概率

--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.

查看 波函数和概率

機率密度函數

在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.

查看 波函数和機率密度函數

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

查看 波函数和機率幅

氫原子

氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.

查看 波函数和氫原子

決定論

決定論(Determinism),又称拉普拉斯信条,是一种哲学立场,認為每個事件的發生,包括人類的認知、舉止、決定和行動,都有条件决定它发生,而非另外的事件发生。”决定论有很多种,取决于什么样的预先条件成为决定的因素。“各种有关决定论的理论贯穿在哲学史中,往往出于不同但有时会重叠的动机与考虑。有些形式的决定论可以从物理学上得到经验地证实或证否。与决定论直接对立的是非决定论。决定论也常常与自由意志相对比。 如果從原始宇宙以來,有一連串的事件註定地、從未中斷地發生,自由意志則是不可能的。Van Inwagen, Peter, 1983, An Essay on Free Will, Oxford: Clarendon Press.

查看 波函数和決定論

波动方程

波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

查看 波函数和波动方程

波包

在任意時刻,波包(wave packet)是局限在空間的某有限範圍區域內的波動,在其它區域的部分非常微小,可以被忽略。波包整體隨著時間流易移動於空間。波包可以分解為一組不同頻率、波數、相位、波幅的正弦波,也可以從同樣一組正弦波構成;在任意時刻,這些正弦波只會在空間的某有限範圍區域相長干涉,在其它區域會相消干涉。 描繪波包輪廓的曲線稱為包絡線。依據不同的演化方程,在傳播的時候,波包的包絡線(描繪波包輪廓的曲線)可能會保持不變(沒有色散),或者包絡線會改變(有色散)。 在量子力學裏,波包可以用來代表粒子,表示粒子的機率波;也就是說,表現於位置空間,波包在某時間、位置的波幅平方,就是找到粒子在那時間、位置的機率密度;在任意區域內,波包所囊括面積的絕對值平方,就是找到粒子處於那區域的機率。粒子的波包越狹窄,則粒子位置的不確定性越小,而動量的不確定性越大;反之亦然。這位置的不確定性和動量的不確定性,兩者之間無可避免的關係,是不確定性原理的一個標準案例。 描述粒子的波包滿足薛定諤方程,是薛定諤方程的數學解。通過含時薛定諤方程,可以預測粒子隨著時間演化的量子行為。這與在經典力學裏的哈密頓表述很類似。.

查看 波函数和波包

波函數塌縮

#重定向 波函数坍缩.

查看 波函数和波函數塌縮

波動力學

波動力學是量子力學的一種表述形式,主要是以波函數及其模數的平方去表示物體的狀態及該狀態出現的機率。對於波函數隨時間的變化,是遵從薛丁格方程式。.

查看 波函数和波動力學

波的传播

波的传播是指波行进的任何方式。 通过比较振动方向与行进方向的关系,我们可以区分纵波和横波。 电磁波和引力波(又称“重力波”)可以在真空中传播,也可以在材料介质中传播,但其他大部分类型的波都不能在真空中传播,需要在传输介质中才能存在。 另一个解释波的传播的实用参数是波速,多由介质的某种密度决定。.

查看 波函数和波的传播

波矢

波向量是波的向量表示方法。波向量是一个向量,其大小表示波数(k.

查看 波函数和波矢

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

查看 波函数和波粒二象性

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

查看 波函数和波长

激子

子(exciton)描述了一對電子與空穴由靜電庫侖作用相互吸引而構成的束縛態,它可被看作是存在於絕緣體,半導體和某些液體中呈電中性的准粒子。激子是凝聚体物理学中轉移能量而不轉移電荷的基本單位。 半導體吸收一個光子之後就會形成一個激子。這個過程實際上是一個電子從價帶激發到導帶而留下一個處於固定位置帶正電的空穴。此時,導帶中的電子會受到空穴庫侖力的吸引。吸引作用提供了能量平衡,使得激子體系的總能量略小於未束縛的電子和空穴的能量。束縛態的波函數是類氫的,屬於奇異原子態,但這個束縛態的束縛能要比氫原子小許多,而激子的半徑則比氫原子的要大。這是因為,一方面,半導體中存在相鄰電子的庫侖屏蔽;另一方面,電子和空穴構成激子的有效質量較小。 電子和空穴的自旋可以是平行或反平行的。自旋通過交換作用發生耦合,於是產生了激子的精細結構。在週期性晶格中,激子的性質與其動量相關。 激子的概念最早由Yakov Frenkel於1931年提出,用於解釋絕緣體中的原子激發。他指出激發態可以像實體粒子一樣在晶格中穿行而不發生電荷轉移。.

查看 波函数和激子

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

查看 波函数和期望值

本徵函數

在数学中,函数空间上定义的线性算子 A 的本征函数(Eigenfunction,又稱--)就是对该空间中任意一个非零函数 f 进行变换仍然是函数 f 或者其标量倍数的函数。更加精确的描述就是 \mathcal A f.

查看 波函数和本徵函數

本徵態

#重定向 特征值和特征向量.

查看 波函数和本徵態

最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

查看 波函数和最小作用量原理

旋量

在數學幾何學與物理中,旋量是複向量空間中的的元素。旋量乃自旋群的表象,類似於歐幾里得空間中的向量以及更廣義的張量,當歐幾里得空間進行無限小旋轉時,旋量做相應的線性轉換。當如此一系列這樣的小旋轉組合成一定量的旋轉時,這些旋量轉換的次序會造成不同的組合旋轉結果,與向量或張量的情形不同。當空間從0°開始,旋轉了完整的一圈(360°),旋量發生了正負號變號(見圖),這個特徵即是旋量最大的特點。在一給定維度下,需要旋量才能完整地描述旋轉,如此引入了額外數量的維度。 在閔考斯基空間的情形,也可以定義出相似的旋量,其中狹義相對論的勞侖茲轉換扮演旋轉的角色。旋量最先是由埃利·嘉當於1913年引入幾何學。Quote from Elie Cartan: The Theory of Spinors, Hermann, Paris, 1966, first sentence of the Introduction section of the beginning of the book (before the page numbers start): "Spinors were first used under that name, by physicists, in the field of Quantum Mechanics.

查看 波函数和旋量

另见

振动和波

波函數塌縮波動力學波的传播波矢波粒二象性波长激子期望值本徵函數本徵態最小作用量原理旋量