徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

范德蒙矩陣

指数 范德蒙矩陣

在線性代數中,范德蒙矩陣的命名來自Alexandre-Théophile Vandermonde的名字,范德蒙矩陣是一個各列呈現出幾何級數關係的矩陣,例如: 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^\\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^\\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^\\ \end 或以第 i 行第 j 列的關係寫作: (部分作者將上述矩陣寫成轉置後的形式,也就是一整排的 1 不列在左邊,而是列在上面。) n階范德蒙矩陣的行列式可以表示為: 當\alpha_i各不相同时,\det(V)不为零。 上述的行列式又稱作判別式。 給行列式使用萊布尼玆公式 可以把公式改寫為 Sn 指的是 的排列集,sgn(σ) 指的是排列 σ 的奇偶性。 若 m≤n,則矩陣 V 有最大的秩 rank (m)。.

9 关系: 判别式矩阵秩 (线性代数)等比数列线性代数置換行列式转置矩阵朗斯基行列式

判别式

判別式是代数学中的概念。一个实系数或复系数多项式的判别式是一个与之相关的表达式。判别式等于零当且仅当多项式有重根。 当多项式的系数不是实数或复数域时,同样有判别式的概念。判别式总是系数域中的元素。这时,判别式为零当且仅当多项式在它的分裂域中有重根。判别式的通常形式为: 其中的a_n是多项式的最高次项系数,r_1,..., r_n是多项式在某个分裂域中的根(如有重根的按重数重复排列)。 判别式的概念也被推广到了多项式以外的其它代数结构,比如说圆锥曲线、二次型和代数数域中。在代数数论中,判别式与所谓的“分歧”的概念紧密相关。实际上,愈为几何的分歧类型对应着愈为抽象的判别式类型,因此在许多方面判别式都是一个中心概念。判别式在本质上表现为相应行列式的计算。.

新!!: 范德蒙矩陣和判别式 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 范德蒙矩陣和矩阵 · 查看更多 »

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

新!!: 范德蒙矩陣和秩 (线性代数) · 查看更多 »

等比数列

等比数列,又称几何数列。是一种特殊数列。它的特点是:从第二项起,每一项与前一项的比都是一个常数。 例如數列 2,4,8,16,32,\cdots,2^,2^,\cdots。 这就是一个等比数列,因为第二项与第一项的比和第三项与第二项的比相等,都等于2,2^与2^的比也等于2。如2这样后一项与前一项的比称公比,符号为q。.

新!!: 范德蒙矩陣和等比数列 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 范德蒙矩陣和线性代数 · 查看更多 »

置換

排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.

新!!: 范德蒙矩陣和置換 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 范德蒙矩陣和行列式 · 查看更多 »

转置矩阵

在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.

新!!: 范德蒙矩陣和转置矩阵 · 查看更多 »

朗斯基行列式

在数学中,朗斯基行列式(Wronskian)名自波兰数学家约瑟夫·侯恩·朗斯基,是用于计算微分方程的解空间的函数。 对于给定的 n 个n-1 次连续可微函数,f1、...、fn,它们的朗斯基行列式 W(f1,..., fn) 为: W(f_1, \ldots, f_n).

新!!: 范德蒙矩陣和朗斯基行列式 · 查看更多 »

重定向到这里:

范德蒙矩阵范德蒙行列式

传出传入
嘿!我们在Facebook上吧! »