徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

柴可拉斯基法

指数 柴可拉斯基法

柴可拉斯基法(简称柴氏法 Czochralski process),又称直拉法,是一种用来获取半导体(如硅、锗和砷化镓等)、金属(如钯、铂、银、金等)、盐、合成宝石单晶材料的晶体生长方法。这个方法得名于波兰科学家扬·柴可拉斯基(Jan Czochralski),他在1916年研究金属的结晶速率时,发明了这种方法。後來,演變為鋼鐵工廠的標準製程之一。 直拉法最重要的应用是晶、晶棒、单晶硅的生长。其他的半导体,例如砷化镓,也可以利用直拉法进行生长,也有一些其他方法(如布里奇曼-史托巴格法)可以获得更低的晶体缺陷密度。.

36 关系: 半导体单晶单晶材料區熔法坩埚多晶硅太阳能电池布里奇曼-史托巴格法二氧化硅位错微下拉晶體成長法石英砷化鎵粒子物理學粒子探测器熔点过渡金属雷射加熱基座生長法集成电路退火掺杂 (半导体)杂质半导体摄氏温标扬·柴可拉斯基晶体缺陷晶棒

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 柴可拉斯基法和半导体 · 查看更多 »

单晶

单晶是指其内部微粒有规律地排列在一个空间格子内的晶体。其晶体结构是连续的,或者可以说,在宏观尺度范围内单晶不包含晶界。 与单晶相对的,是众多晶粒(Crystallite)组成的多晶(Polycrystal)。 单晶材料是一种应用日益广泛的新材料,由单独的一个晶体组成,其衍射花样为规则的点阵。相对普通的多晶体材料性能特殊,一般采用提拉法制备。 單晶根據晶體生長法製作分為:.

新!!: 柴可拉斯基法和单晶 · 查看更多 »

单晶材料

#重定向 单晶.

新!!: 柴可拉斯基法和单晶材料 · 查看更多 »

區熔法

#重定向 區域熔煉.

新!!: 柴可拉斯基法和區熔法 · 查看更多 »

坩埚

坩埚(Crucible)是實驗室中使用的一种杯状器皿,最早使用于炼金术实验。用途是盛液体或固体进行高温加热。另外,冶金学中用来融化金属的容器也被称作坩埚。 坩埚的材料要求耐热,比较坚固,而且在高温下也不易发生化学反应。传统坩埚为陶瓷制作,现代有用石墨、白金、镍、铬等金属。有些坩埚有相同材料制作的盖子。.

新!!: 柴可拉斯基法和坩埚 · 查看更多 »

多晶硅

多晶硅,是由细小的单晶硅构成的材料。它不同于用于电子和太阳能电池的单晶硅,也不同于用于薄膜设备和太阳能电池的非晶硅。.

新!!: 柴可拉斯基法和多晶硅 · 查看更多 »

太阳能电池

太阳能电池(亦称太阳能芯片或光电池)是一种將太阳光通过光生伏打效应轉成電能的裝置。 在常見的半導體太陽能電池中,透過適當的能階設計,便可有效的吸收太陽所發出的光,並產生電壓與電流。這種現象又被称为太阳能光伏。 太阳能发电是一种可再生的环保发电方式,其发电过程中不会产生二氧化碳等溫室气体,因此不会对环境造成污染;但太阳能电池板的生产过程会排放大量有毒废水。按照制作材料分为硅基半导体电池、CdTe薄膜电池、薄膜电池、染料敏化薄膜电池、有机材料电池等。其中硅电池又分为单晶硅电池、多晶硅电池和无定形体硅薄膜电池等。对于太阳能电池来说最重要的参数是转换效率,目前在实验室所研發的硅基太阳能电池中(並非),单晶硅电池效率为25.0%,多晶硅电池效率为20.4%,CIGS薄膜电池效率达19.8%,CdTe薄膜电池效率达19.6%,非晶硅(无定形硅)薄膜电池的效率为10.1%。.

新!!: 柴可拉斯基法和太阳能电池 · 查看更多 »

布里奇曼-史托巴格法

布里奇曼-史托巴格法晶體成長技術以哈佛物理學家珀西·布里奇曼與麻省理工學院物理學家唐納·史托巴格(Donald C. Stockbarger, 1895-1952)為名。這種技術囊括兩種大同而小異的方法進行人造胚晶(單晶晶錠)的晶體成長,但也可以凝固出多晶晶錠。 布里奇曼-史托巴格法牽涉到加熱多晶材料工件至其熔點以上的溫度,然後再從工件容器有晶種的一端緩慢地開始進行冷卻。今若欲將一塊多晶工件成長成單晶晶錠,則需要先找一顆單晶來擔任晶種,使其與工件之冷凝端相接,俟爐料經熔融凝固後,在冷卻爐段凝固新生的晶體沿坩鍋容器的長邊逐漸生成,且將與晶種有相同之結晶取向。該過程可以在水平或垂直方向上進行,且常涉及旋轉坩堝或安瓿來攪拌熔融液。 布里奇曼法雖然是20世紀初開發出來,算較老式的晶體成長方法,可是在長某些特定半導體晶體的時候還是很好用,尤其是那些柴氏拉晶法很難長的晶體,譬如說發光二極體要用的砷化鎵。用布里奇曼法來長單晶雖然頗為可靠,但是長出來的東西往往有性質、雜質不均勻的問題。 布里奇曼法跟史托巴格法的差異相當細微。兩種方法皆仰賴溫度梯度與移動的坩鍋,不過布里奇曼法利用爐口相對不易控制的溫度梯度;而史托巴格法則在加熱爐段跟冷卻爐段中間還加了一片隔板,把兩爐段不同溫度分開。一般認為史托巴格的改良,對於熔融的固液界面的溫度梯度控制較好。 當上述裝置沒有加晶種時,各種棒狀、塊狀、甚至不規則狀的晶體進料都可以在熔融又凝固後產生多晶晶錠。這些多晶晶錠的顯微組織會出現成列的晶粒,類似金屬或合金在後會有的顯微組織。.

新!!: 柴可拉斯基法和布里奇曼-史托巴格法 · 查看更多 »

二氧化硅

二氧化硅(化学式:Si)是一种酸性氧化物,对应水化物为硅酸(Si)。它从古代以来就已经被人们知道了。 二氧化硅在自然界中最常见的是石英,以及在各种生物体中。在世界的许多地方,二氧化硅是砂的主要成分。二氧化硅是最复杂和最丰富的材料家族之一,既是多种矿物质,又是被合成生产的。 值得注意的实例包括熔融石英,水晶,热解法二氧化硅,硅胶和气凝胶。 应用范围从结构材料到微电子学到食品工业中使用的成分。 二氧化硅是硅最重要的化合物,约占地壳质量的12%。自然界中二氧化硅的存在形态有结晶形和无定形两大类,统称硅石。.

新!!: 柴可拉斯基法和二氧化硅 · 查看更多 »

位错

位错(dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。“位错”这一概念最早由意大利数学家和物理学家维托·伏尔特拉于1905年提出。 理想位错主要有两种形式:刃位错(edge dislocations)和 螺旋位错(screw dislocations)。混合位错(mixed dislocations)兼有前面两者的特征。 数学上,位错属于一种拓扑缺陷,有时称为“孤立子”或“孤子”。这一理论可以解释实际晶体中位错的行为:可以在晶体中移动位置,但自身的种类和特征在移动中保持不变;方向(伯格斯矢量)相反的两个位错移动到同一点,则会双双消失,或称“湮灭”,若没有与其他位错发生作用或移到晶体表面,那么任何单个位错都不会自行“消失”(即伯格斯矢量始终保持守恒)。.

新!!: 柴可拉斯基法和位错 · 查看更多 »

微下拉晶體成長法

微下拉晶體成長法(Micro-pulling-down,簡稱μ-PD或微下拉法)是以連續的熔融餵料通過坩堝底部一微小通道來成長晶體的技術。熔融餵料抵達坩堝下方的固液兩相接面後會連續不斷地進行凝固。在穩定的操作情況下,液相熔融料和固相晶體會各自以等速被往下拉,但兩者的向下速度通常不會一樣。 此法可以成長多種晶體如釔鋁柘榴石、矽、矽鍺、鈮酸鋰、藍寶石、氧化釔、氧化鈧、氟化鋰、氟化鈣、氟化鋇等等。.

新!!: 柴可拉斯基法和微下拉晶體成長法 · 查看更多 »

石英

石英(quartz)是大陆地壳数量第二多的矿石,仅次于长石,其晶体结构是SiO4硅-氧四面体的连续框架,其中每个氧在两个四面体之间共享,得到SiO2的总化学式,石英的種類有很多,无色全透明的石英称为水晶。有一些被做為半寶石使用,自古以来石英被广泛用作制作珠宝和硬石雕刻,尤其在欧洲和中东地区。纯淨的石英能够让一定波长范围的紫外线、可见光和红外线通过,具有旋光性、压电效应和电致伸缩等性质。石英的完整晶体产于岩石晶洞中,块状的产于热液脉矿中,粒状的则是花岗岩、片麻岩和砂岩等各种岩石的重要组成部分,石英晶体也可用人工方法生长。.

新!!: 柴可拉斯基法和石英 · 查看更多 »

砷化鎵

砷化鎵(化學式:GaAs)是鎵和砷兩種元素所合成的化合物,也是重要的IIIA族、VA族化合物半导体材料,用來製作微波積體電路、紅外線發光二極體、半导体激光器和太陽電池等元件。.

新!!: 柴可拉斯基法和砷化鎵 · 查看更多 »

(Boron)是一种化学元素,化学符号为B,原子序数为5,是一种類金属。由於硼的產生完全來自于宇宙射線散裂而非恆星核合成反應,硼在太陽系與地殼的含量相當稀少。天然的硼主要存在于硼砂()矿中。.

新!!: 柴可拉斯基法和硼 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 柴可拉斯基法和硅 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

新!!: 柴可拉斯基法和磷 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 柴可拉斯基法和粒子物理學 · 查看更多 »

粒子探测器

粒子探测器(Particle detector),是在物理实验、原子核物理学等领域用于探测、跟踪和鉴别高能粒子的一种物理实验设备。现代粒子探测器也用于测量放射粒子的能量、动量、旋转和电荷等等。.

新!!: 柴可拉斯基法和粒子探测器 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 柴可拉斯基法和熔点 · 查看更多 »

银(silver)是一种化学元素,化学符号Ag(来自argentum),原子序数47。银是一种柔软有白色光泽的过渡金属,在所有金属中导电率、导热率和反射率最高。銀在自然界中的存在方式有纯净的游离态单质(自然银),与金等其他金属的合金,还有含银矿石(如辉银矿和角银矿)。大部分银都是精炼铜、金、铅和锌的副产品。 银不易受化學藥品腐蝕,长久以来被视为贵金属。银比金来源更丰富,在现代以前的货币体系中作为硬币使用,有时甚至和金一道使用。除了货币之外,银的用途还有太阳能电池板、净水器、珠宝和装饰品、高价餐具和器皿(银器),银币和还可用于投资。银在工业上用于和导体、特制镜子、窗膜和化学反应的催化剂。银的化合物用于胶片和X光。稀硝酸银溶液等银化合物会产生,可以消毒和消灭微生物,用于绷带、伤口敷料、导管等医疗器械。.

新!!: 柴可拉斯基法和銀 · 查看更多 »

过渡金属

过渡元素(Transition element)是指元素周期表中d区的一系列金属元素,又称过渡金属(Transition metal)。一般来说,这一区域包括3到12一共十个族的元素,但不包括f区的内过渡元素。 “过渡元素”这一名词首先由门捷列夫提出,用于代表8、9、10三族元素。他认为从碱金属到锰族是一个“週期”,铜族到卤素又是一个,那么夹在两个周期之间的元素就有过渡的性质。而現今雖然過渡金屬这个词还在使用,但已和原本的意思不同。 过渡金属元素的一个周期称为一个过渡系,第4、5、6周期的元素分别属于第一、二、三过渡系。.

新!!: 柴可拉斯基法和过渡金属 · 查看更多 »

钯是一种化学元素,化学符号為Pd,原子序数46。鈀的拉丁名稱Palladium是以小行星智神星來命名的,另一種以小行星來命名的元素是鈰。 鈀是一種罕見的、有光澤的銀白色金屬,鈀與鉑、銠、釕、銥、鋨形成一組鉑族金屬的元素家族。鉑族金屬化學性質相似,但鈀的熔點最低,是這些貴金屬中密度最低的一种。 在实验室裡,经常把一氧化碳通入稀氯化钯溶液中来制取钯: PdCl_ + CO+H_O.

新!!: 柴可拉斯基法和钯 · 查看更多 »

鉑(Platinum),化學元素,俗稱白金,化學符號為Pt,原子序為78。鉑密度高、延展性高、反應性低的灰白色貴金屬,屬於過渡金屬。 鉑同屬於鉑系元素和10族元素。它共有六種自然產生的同位素。鉑是地球地殼中罕見的元素,丰度排在第71名,平均豐度大約為5 μg/kg,地壳百万分之0.001为铂。它一般出現在某些鎳和銅礦石中,位於原生元素礦藏,主要分佈在南非,當地的鉑產量佔全球的80%。鉑年產量只有幾百噸,應用亦十分重要,因此非常貴重,是主要的貴金屬貿易商品。 鉑是非常不活泼的金屬。即便在高溫下,它也有極強的抗腐蝕性,屬於抗腐蝕金屬。在自然中,鉑有時以純金屬狀態出現,不與其他元素結合。鉑自然出現在河流的沖積層中,所以前哥倫布時期的南美原住民最早用鉑制作工藝品。歐洲最早在16世紀就有記載使用鉑;1748年,安東尼奧·烏略亞發表報告,描述此來自哥倫比亞的新金屬,這時科學家才開始研究鉑元素。 鉑的應用包括:催化轉換器、實驗室器材、電觸頭和電極、電阻溫度計、牙科器材及首飾等。由於鉑是重金屬,所以它的鹽會危害健康;但鉑的抗腐蝕性強,所以其毒性比一些其他金屬較低。一些含鉑化合物,特別是順鉑,可用於化學療法以治療某些癌症。.

新!!: 柴可拉斯基法和铂 · 查看更多 »

锗(Germanium,舊譯作鈤)是一种化学元素,它的化学符号是「Ge」,原子序数是32。它是一種灰白色类金属,有光澤,質硬,屬於碳族,化學性質與同族的錫與硅相近。在自然中,鍺共有5種同位素,原子質量數在70至76之間。它能形成許多不同的有機金屬化合物,例如四乙基鍺及異丁基鍺烷等。 即使地球表面上鍺的豐度地殼蘊含量相對较高,但由於礦石中很少含有高濃度的鍺,所以它在化學史上發現得比較晚。門捷列夫在1869年根據元素周期表的位置,預測到鍺的存在與其各項屬性,並把它稱作擬硅。克莱门斯·温克勒於1886年在一種叫硫銀鍺礦的稀有礦物中,除了找到硫和銀之外,還發現了一種新元素。儘管這種新元素的外觀跟砷和銻有點像,但是新元素在化合物中的化合比符合門捷列夫對硅下元素的預測。温克勒以他的國家——德國的拉丁語名來為這種元素命名。 鍺是一種重要的半導體材料,用於製造晶體管及各種電子裝置。主要的終端應用為光纖系統與紅外線光學(infrared optics),也用於聚合反應的催化劑,制造電子器件與太陽能電力等。現在,開採鍺用的主要礦石是閃鋅礦(鋅的主要礦石),也可以在銀、鉛和銅礦中,用商業方式提取鍺。一些鍺化合物,如四氯化鍺(GeCl4)和甲鍺烷,会刺激眼睛、皮膚、肺部與喉嚨。.

新!!: 柴可拉斯基法和锗 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 柴可拉斯基法和金 · 查看更多 »

雷射加熱基座生長法

#重定向 雷射加熱平台成長.

新!!: 柴可拉斯基法和雷射加熱基座生長法 · 查看更多 »

集成电路

集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.

新!!: 柴可拉斯基法和集成电路 · 查看更多 »

退火

退火(Annealing)在冶金學或材料工程中,是一種改變材料微結構且進而改變如硬度和強度等機械性質的熱處理。 過程為將金屬加溫到某個高於再結晶溫度的某一温度並維持此溫度一段時間,再將其緩慢冷卻。退火的功用在於恢復该金属因冷加工而降低的性質,增加柔軟性、延性和韌性,並釋放內部殘留應力、以及產生特定的顯微結構。退火過程中,多以原子或晶格空位的移動来釋放內部殘留應力,透過這些原子排列重組的過程來消除金屬或陶瓷中的差排,這項改變也讓金屬中的差排更易移動,增加了它們的延性。 在銅、鋼鐵、銀、黃銅的案例中,退火需要歷經很高的温度,通常都要将金屬加熱到熾熱並維持一段時間再冷卻。不像其它含鐵的合金需要緩慢冷卻,銅、銀和黃銅它們可以在空氣中緩慢冷卻,也可以快速在水中淬火。退火過後的金屬可以再進一步加工,如沖壓、塑造、成形等。.

新!!: 柴可拉斯基法和退火 · 查看更多 »

掺杂 (半导体)

掺杂(doping)是半导体制造工艺中,为纯的本征半导体引入杂质,使之电气属性被改变的过程。引入的杂质与要制造的半导体种类有关。轻度和中度掺杂的半导体被称作是杂质半导体,而更重度掺杂的半导体则需考虑费米统计律带来的影响,这种情况被称为简并半导体。.

新!!: 柴可拉斯基法和掺杂 (半导体) · 查看更多 »

杂质半导体

杂质半导体(extrinsic semiconductor)又称外质半导体,是掺杂了杂质的半导体,即在本征半导体中加入掺杂物,使得其电学性质较无杂质半导体发生了改变。.

新!!: 柴可拉斯基法和杂质半导体 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 柴可拉斯基法和氧 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 柴可拉斯基法和氩 · 查看更多 »

摄氏温标

摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.

新!!: 柴可拉斯基法和摄氏温标 · 查看更多 »

扬·柴可拉斯基

扬·柴可拉斯基(Jan Czochralski,)是一位波兰化学家,发明了提炼单晶硅的柴可拉斯基法,该法被用于半导体制造业中制造晶圆。.

新!!: 柴可拉斯基法和扬·柴可拉斯基 · 查看更多 »

晶体缺陷

晶体缺陷(crystallographic defect)是指晶体结构中周期性的排列规律被打破的情况。P.

新!!: 柴可拉斯基法和晶体缺陷 · 查看更多 »

晶棒

#重定向 人造胚晶.

新!!: 柴可拉斯基法和晶棒 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »