徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

粒子物理學

指数 粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

99 关系: 基本粒子原子原子物理学原子核原子核物理学反中微子反粒子古希腊同步辐射复合粒子大型強子對撞機大型電子正子對撞機大亚湾核电站夸克宇稱小柴昌俊射线中子中微子中微子振荡中國希尔伯特空间希格斯玻色子布鲁克黑文国家实验室万维网万有理论人口老龄化廣義相對論弦理論弱相互作用强相互作用微中子天文学德国德米特里·伊万诺维奇·门捷列夫德谟克利特俄罗斯化學北京正负电子对撞机國家同步輻射研究中心冷战元素周期表光子前子固体物理学Belle實驗筑波市粒子粒子加速器粒子物理學约翰·道尔顿...约瑟夫·汤姆孙美国瑞士生物学电子物理学物质芝加哥规范玻色子詹姆斯·查德威克高能加速器研究機構诺贝尔物理学奖質子费米国立加速器实验室超对称超對稱粒子超級質子同步加速器超级神冈探测器迴圈量子引力理論膠子重離子量子力学量子场论量子色動力學自然長島艾萨克·牛顿苏联電磁力電荷W及Z玻色子核聚变核裂变标准模型次原子粒子欧内斯特·卢瑟福歐洲核子研究組織正電子汉堡波粒二象性法国混沌理论新竹科學工業園區新西伯利亚日内瓦日本整体论 扩展索引 (49 更多) »

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 粒子物理學和基本粒子 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 粒子物理學和原子 · 查看更多 »

原子物理学

原子物理學是研究原子的結構和性質及原子與電磁輻射和其它原子相互作用的科學。.

新!!: 粒子物理學和原子物理学 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 粒子物理學和原子核 · 查看更多 »

原子核物理学

原子核物理学(简称核物理学,核物理或核子物理)是研究原子核成分和相互作用的物理学领域。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构并带动相应的核子技术进展。原子核物理学最常见的和有名的应用是核能发电的和核武器的技术,但研究还提供了在许多领域的应用,包括核医学和核磁共振成像,材料工程的离子注入,以及地质学和考古学中的放射性碳定年法。 粒子物理学领域是从原子核物理学演变出来的,并且通常被讲授与原子核物理学密切相关。.

新!!: 粒子物理學和原子核物理学 · 查看更多 »

反中微子

物理学里,反中微子,中微子的反物质,是核反应β衰變产生出来的中性粒子.

新!!: 粒子物理學和反中微子 · 查看更多 »

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

新!!: 粒子物理學和反粒子 · 查看更多 »

古希腊

位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.

新!!: 粒子物理學和古希腊 · 查看更多 »

同步辐射

同步辐射是带电粒子的運動速度接近光速(v≈c)在电磁场中偏转时,沿運動的切線方向发出的一种电磁辐射,最先在电子同步加速器上发现,故得此名,又称同步加速器辐射。它与回旋辐射(由回旋加速器产生的辐射)类似,区别是同步辐射中的电子速度更高,已接近光速,要考虑相对论效应。 由于重子的静止质量比电子大三个數量级以上,即使在TeV级的质子同步加速器中,因同步辐射造成的能量损失依然是不重要的。而对MeV级的电子同步加速器,同步辐射已十分显著。同步辐射使粒子在横向和纵向的振荡阻尼,并与量子起伏达到平衡态。这也是为什么电子同步加速器中束流易于稳定和束流发射度较小且不依赖于入射束性能的原因。 由于同步辐射造成的能量损失是阻碍电子同步加速器能量提高的主要因素。同时又发现它具有宽阔的连续光谱、高度的准直性和偏振性等特点,加上高功率和高亮度,使电子储存环成为一种性能优异的新型强光源而得到广泛应用。同步辐射又是天体物理中的一种重要辐射机制。.

新!!: 粒子物理學和同步辐射 · 查看更多 »

复合粒子

复合粒子是由基本粒子结合成的亚原子粒子-强子,包括重子和介子,以及其它的包括原子核、原子、奇异原子-电子偶素、分子。.

新!!: 粒子物理學和复合粒子 · 查看更多 »

大型強子對撞機

大型強子對撞機(Large Hadron Collider,縮寫:LHC)是一座位於瑞士日內瓦近郊歐洲核子研究組織的對撞型粒子加速器,作為國際高能物理學研究之用。LHC已經建造完成,2008年9月10日開始試運轉,並且成功地維持了兩質子束在軌道中運行,成為世界上最大的粒子加速器設施。大型強子對撞機是一個國際合作計劃,由全球85國中的多個大學與研究機構,逾8,000位物理學家合作興建,經費一部份來自歐洲核子研究組織會員國提供的年度預算,以及參與實驗的研究機構所提撥的資金。 大型強子對撞機本預計於2008年10月21日開始進行低能量對撞實驗。但2008年9月19日,大型強子對撞機第三與第四段之間用來冷卻超導磁鐵的液態氦發生了嚴重的洩漏,據推測是由於聯接兩個超導磁鐵的接點接觸不良,在超導高電流的情況下融毀所造成的。依據歐洲核子研究組織的安全條例,必需將磁鐵升回到室溫後詳細檢查才能繼續運轉,這將需要三到四週的時間。要再冷卻回運作溫度,也是得經過三四週的時間,如此正好遇上預定的年度檢修時程,因此必須延遲開始運作的時間。 2009年11月23日,大型強子對撞機進行了在修復完成後的第一次試撞。 2015年4月5日,經過兩年的精心維護與升級,大型強子對撞機再度啟動,預計今年夏天將會進行13TeV質子質子碰撞實驗,探索未知領域,例如,尋找暗物質、分析希格斯機制、研究夸克-膠子等離子體等等。.

新!!: 粒子物理學和大型強子對撞機 · 查看更多 »

大型電子正子對撞機

大型電子正子對撞機(Large Electron-Positron Collider,簡稱:LEP)是歐洲核子研究組織(CERN)的粒子加速器之一,1989年開始營運,位在瑞士和法國的邊界附近,大型電子正子對撞機的周長長達27公里,專門加速電子和正子,是目前已建成的最高能量的輕子加速器,且迄今為止還保留著粒子加速器的速度紀錄。在2000年末的時候,LEP被關停并拆解,以給在建的新的大型強子對撞機騰出軌道空間。.

新!!: 粒子物理學和大型電子正子對撞機 · 查看更多 »

大亚湾核电站

大亚湾核电厂,又称大亚湾核电站,位于中国广东省深圳市大鹏新区大鹏半岛,是中国建成的第二座核电站,也是中國首座使用国外技术和资金建设的核电站。此后,在大亚湾核电站之侧又建设了岭澳核电站,两者共同组成一个大型核电基地。 大亞灣核電廠裝有兩台984兆瓦發電機,總發電量1,968兆瓦。現協議為香港中華電力在2014年購買略高於70%發電量(1,378兆瓦),並於2015至2018年上調至約80%,合約到2034年完結,到時核電廠已運作41年,一般核電廠設計壽命大約40年。香港核電投資有限公司的網站「預計大亞灣在謹慎的操作和維修下有60年的壽命」。.

新!!: 粒子物理學和大亚湾核电站 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 粒子物理學和夸克 · 查看更多 »

宇稱

在量子力學中,宇稱被描述成宇稱變換中的量,以P (Parity) 表示。宇稱變換(又稱宇稱倒裝),是一個在一個三維座標系中其中一維的翻轉(變換),在三維空間之內,它也可以是一個在x, y, z 軸中同時進行的變換(點反演) 因為宇稱變換會將一個現象轉化為其的鏡像,所以宇稱變換也可以被形容成一個測試左右手座標系的物理現象。在宇稱變換之中,假設變換是在右手座標系,這樣的變換在左手座標系看來就可以被認為是一個身分轉換,反之亦然。 大部分的標準模型在宇稱底下,都呈現宇稱對稱,但弱交互作用卻會破壞這種對稱性。 在任何一維的三維座標系下,P的矩陣的行列式.

新!!: 粒子物理學和宇稱 · 查看更多 »

小柴昌俊

小柴昌俊(,),日本物理学家,日本学士院会员。現任东京大学国际基本粒子物理中心(ICEPP)高级顾问,東京大學最初4名特別榮譽教授之一。勳一等旭日大綬章、文化勳章表彰。 1987年,小柴教授在超级神冈探测器完成人類史上首次的微中子發生觀測。2002年,小柴與戶塚洋二、梶田隆章三人同獲潘諾夫斯基實驗粒子物理學獎。同年因其“在天体物理学领域做出的先驱性贡献,其中包括在探测宇宙微中子和发现宇宙X射线源方面的成就”而获得诺贝尔物理学奖。 小柴教授是首位「雙博士」頭銜的日本人諾貝爾獎得主,此外亦是日本人第2位諾貝爾獎暨沃爾夫獎雙料得主。他的老師朝永振一郎、門生梶田隆章也都是諾貝爾物理學獎得主。.

新!!: 粒子物理學和小柴昌俊 · 查看更多 »

射线

射線(ray)是一束細小的流動粒子束或能量,如光線、X射線、α射線、β射線。.

新!!: 粒子物理學和射线 · 查看更多 »

中子

| magnetic_moment.

新!!: 粒子物理學和中子 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 粒子物理學和中微子 · 查看更多 »

中微子振荡

中微子振荡(Neutrino oscillation)是一个量子力学现象,是指微中子在生成時所伴隨的輕子(包括電子、渺子、陶子)味可在之後轉化成不同的味,而被測量出改變。當微中子在空間中傳播時,測到微中子帶有某個味的機率呈現週期性變化。 理论物理学家布鲁诺·庞蒂科夫最先於1957年提出此猜想。 reproduced and translated in and reproduced and translated in 爾後一連串的各种實驗皆觀察到此一現象。微中子振盪也是长期未解决的太陽微中子問題的解答。 中微子振荡无论对理论物理还是实验物理而言都是相当重要的。因为这意味着中微子具有非零的靜質量,这与原始版本的粒子物理标准模型不相吻合。 由於发现了微中子振盪現象存在的證明,並取得微中子質量數據,日本超級神岡探測器的梶田隆章以及加拿大薩德伯里微中子觀測站的阿瑟·麥克唐納兩人獲頒2015年諾貝爾物理學獎。.

新!!: 粒子物理學和中微子振荡 · 查看更多 »

中國

中國是位於東亞的國家或地理區域,此名稱最早见于西周,用來指以洛陽盆地為中心的中原地區,與四夷相對,之後逐漸用來指稱從夏朝起延續傳承至今的各政權。其疆域隨著歷史演變而有所增減,但大多不脫以中原王朝根基所在的汉地九州為中心。民族構成上以漢族為主體,文化上透過歷代王朝政權與周邊各民族政權的交流與征戰,而融入不少周邊民族的文化。現今國際上廣泛承認代表中國的政權是中华人民共和国。 中國文明是世界上最早的文明之一。 新石器时期,中原地区开始出现聚落组织;公元前27世纪左右出现方国,以共主為首的制度;前20世纪开始,古代中国进入世袭的封建皇朝阶段;公元前2世紀,秦滅六國,完成中國第一次大一統。此後幾千年來,中國的政治制度以半傳統的夏代為基礎的世襲君主制以朝代更換政權運作。此後经多次擴大,破裂,重組,朝代更迭,經過數次统一与分裂交替进行。直到1911年辛亥革命後,中國废除君主制,实行共和制,清朝被1912年成立的中华民国取代。1945年第二次國共內戰爆發後,中國共產黨逐漸控制中國的大部分領土,最終於1949年10月1日建立中华人民共和国,形成了中华民国與中华人民共和国双方相隔台灣海峽对峙的局面;惟做為國際關係核心場域的聯合國系統內,中華民國政府仍持擁有中國代表權,直到1971年聯合國大會2758號決議通過後,才被中華人民共和國政府完全取代。 中國經濟曾经在相当长的历史时期中在世界上占有重要的地位,其周期通常与王朝的兴衰与更替相對應。中國經濟史可分为几个階段:第一階段為遠古至西晉末年,其中以三國孫吳時轉變較大;第二階段為東晉至北宋末年,其中以唐安史之亂劃分為前後;第三階段為南宋建立至鴉片戰爭張家駒,《兩宋經濟重心的南移》,湖北人民出版社,1957年。工业革命後,西方國家的工業成品,無論在數量和質量上,相較於當時中国純手工業經濟出産的商品,佔有壓倒性的優勢。而且,由于明清兩代以來,中國對外政策趨於保守,並對外實行海禁,使得西方工業化的影响步伐在中国国門前站住了腳,中国在19世紀末以前,一直沒有很好地進行工業化,經濟遂落後於西方。1978年改革開放施行後,中国经济發展迅速,對世界經濟的影響也日漸顯著。 中国文化歷經上千年的歷史演變,是各區域、各民族古代文化長期相互交流、借鉴、融合的結果。其中汉文化对日本、朝鮮半島和东南亚有深远影响,形成漢字文化圈。中国的传统艺术形式有国乐、相声、戏曲、书法、国画、文學、陶瓷藝術、雕刻等,传统娱乐活动有象棋、围棋、麻将、中国武术等。茶、酒、菜和筷子等为中国的特色饮食文化,春节(舊曆新年)、元宵、清明、端午、七夕、中秋、重阳、冬至等为传统节日。中国传统上是一个儒学国家,以夏历为历法,以五伦为道德准则。春秋时期孔子「有教无类,因材施教」开始办私塾培养人才,汉朝时采用察举推选政府官员,隋朝起实行科举在平民中选拔人才。此外,中国歷朝歷代都设有史官,因此保存有十分详尽的历史资料,如《二十四史》、《资治通鉴》等。古代中國在科學領域上有豐厚的成就。.

新!!: 粒子物理學和中國 · 查看更多 »

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

新!!: 粒子物理學和希尔伯特空间 · 查看更多 »

希格斯玻色子

希格斯玻色子(Higgs boson)是標準模型裏的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。 物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。 希格斯玻色子是因物理學者彼得·希格斯而命名。術語「玻色子」是為了紀念印度物理學者薩特延德拉·玻色而命名。玻色子的自旋为整数,其物理行為可以用玻色-愛因斯坦統計描述,不遵守泡利不相容原理,即處於單獨一個量子態上的粒子數目不受限制。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。.

新!!: 粒子物理學和希格斯玻色子 · 查看更多 »

布鲁克黑文国家实验室

布鲁克黑文国家实验室(Brookhaven National Laboratory,简称BNL)是美国的一所国家实验室,位于纽约州长岛布魯克黑文 (紐約州),1947年在前美国基地阿普顿营原址建造。该实验室由布鲁克黑文镇而得名。 实验室本來由美國原子能委員會所擁有,後來因委員會被合併而轉交給美國能源部再外判予各大學及研究機構。現時实验室由石溪大學及合夥經營的的布鲁克黑文科学协会管理。 实验室約僱用3000名科學家、工程師及其他技術人員,每年接待4000名訪問學者。实验室的研究共產生七名諾貝爾獎得獎者。 实验園區設有獨立的警署、消防局及郵遞區號(11973)。園區共估。.

新!!: 粒子物理學和布鲁克黑文国家实验室 · 查看更多 »

万维网

万维网(World Wide Web),亦作「WWW」、「Web」,是一个由许多互相链接的超文本组成的系统,通过互联网访问。英國科學家蒂姆·伯纳斯-李於1989年發明了萬維網。1990年他在瑞士CERN的工作期間編寫了第一個網頁瀏覽器。網頁瀏覽器於1991年在CERN向外界發表,1991年1月開始發展到其他研究機構,1991年8月在互聯網上向公眾開放。 萬維網是資訊時代發展的核心,也是數十億人在網際網路上進行互動的主要工具。網頁主要是文本文件格式化和超文件標示語言(HTML)。除了格式化文字之外,網頁還可能包含圖片、影片、聲音和軟體元件,這些元件會在使用者的網頁瀏覽器中呈現為多媒體內容的連貫頁面。 萬維網並不等同網際網路,萬維網只是網際網路所能提供的服務其中之一,是靠着網際網路運行的一項服務。.

新!!: 粒子物理學和万维网 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

新!!: 粒子物理學和万有理论 · 查看更多 »

人口老龄化

人口老龄化又称人口老化或人口高龄化、高齡化社會,是指因出生率降低和/或预期寿命延长导致年龄中位数增加的现象。大多数发达国家人口长寿,老龄人群变多;但发展中国家目前也出现类似现象。除了联合国确认的18个“人口异常”国家外,全世界普遍出现这一现象。现在,老龄人口为人类历史之最。, United Nations Population Division.

新!!: 粒子物理學和人口老龄化 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 粒子物理學和廣義相對論 · 查看更多 »

弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

新!!: 粒子物理學和弦理論 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 粒子物理學和弱相互作用 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: 粒子物理學和强相互作用 · 查看更多 »

微中子天文学

中微子天文学以测量中微子的流量为主要手段,研究天体物理过程。恒星内部的核反应、超新星爆发等过程都会发出大量的中微子。中微子是一种轻子,不参与强相互作用和电磁相互作用,与普通物质的反应截面很小,平均自由程很长,给探测带来了很大的困难。太阳中微子是在太阳内部核反应过程中产生的,在地球附近具有很高的流量。因为中微子与物质的弱相互作用,中微子提供了一个独特的机会去观察那些光学望远镜无法接触的过程。 中微子天文学领域仍然处于非常初期的阶段 - 唯一证实地球之外来源至今为止仅有太阳和超新星SN 1987A。.

新!!: 粒子物理學和微中子天文学 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 粒子物理學和德国 · 查看更多 »

德米特里·伊万诺维奇·门捷列夫

德米特里·伊萬諾維奇·門捷列夫(ˈdmʲitrʲɪj ɪˈvanəvʲɪtɕ mʲɪndʲɪˈlʲejɪf ,),19世纪俄国科學家,發現化學元素的週期性,依照原子量,製作出世界上第一張元素週期表,并据以预见了一些尚未发现的元素。.

新!!: 粒子物理學和德米特里·伊万诺维奇·门捷列夫 · 查看更多 »

德谟克利特

德谟克利特(希腊语:Δημόκριτος,前460年——前370年或前356年)(Democritus)来自古希腊爱琴海北部海岸的自然派哲学家。德谟克利特是经验的自然科学家和第一个百科全书式的学者。古代唯物思想的重要代表。他是“原子论”的创始者,由原子论入手,他建立了认识论。 他认为每一种事物都是由原子所组成的,整个世界的本质只是原子和虚空。原子不可分割,并不完全一样。在自然界中,每一件事的发生都有一个自然的原因,这个原因原本即存在于事物的本身。并在哲学、逻辑学、物理、数学、天文、动植物、医学、心理学、论理学、教育学、修辞学、军事、艺术等方面,他都有所建树。可惜大多数著作都散失了,至今只能看到若干残篇断简,这对理解他的思想造成了一定的困难。 德谟克利特的自然科学虽然也有类似实验解剖这样的科学结论,但是他在哲学上的大部分见解都与经验直接相关,他的原子论是受着水气蒸发以及香味传递等感性直观而依赖哲学思维推测出来的,通过感官的参与,即经验,直接推测了原子论的可能,并由原子论进一步影响认识论等,说他是自然科学家,主要是缘于他对于自然科学起到的奠基作用,但是在哲学领域,他是个彻头彻尾的经验论者,在他那个年代的哲学家鲜有严谨依赖科学思维进行哲学结论的人,这是可想而知的。.

新!!: 粒子物理學和德谟克利特 · 查看更多 »

俄罗斯

俄罗斯联邦(a,缩写为РФ),簡稱俄罗斯(a),是位於欧亚大陆北部的聯邦共和國,國土横跨欧亞两大洲,为世界上土地面积最大的国家,拥有超过1700万平方公里的面积,占地球陆地面积八分之一;它也是世界上第九大人口国家,拥有1.47亿人口,77%居住于其较为发达的欧洲部分。俄罗斯国土覆盖整个亚洲北部及东欧大部,横跨11个时区,涵盖广泛的环境和地形。拥有全世界最大的森林储备和含有约世界四分之一的淡水的湖泊。俄罗斯有十四個陸上鄰國(從西北方向起逆时针序):挪威、芬兰、爱沙尼亚、拉脱维亚、立陶宛、波蘭、白俄罗斯、乌克兰、格鲁吉亚、阿塞拜疆、哈萨克斯坦、中国、蒙古和朝鲜(其中立陶宛和波蘭僅與俄羅斯外飛地加里寧格勒州接壤),另外與阿布哈茲和南奧塞梯兩個只有俄羅斯承認的非聯合國會員國接壤。同時,俄羅斯還與日本、美国、加拿大、格陵蘭(丹麥)、冰島、瑞典、土耳其隔海相望。俄羅斯北部和東部分別為北冰洋和太平洋包圍,西北和西南則分別可經由波羅的海和黑海通往大西洋。 俄罗斯历史始于欧洲的东斯拉夫民族,聚集区域自公元3世纪至8世纪逐渐扩大。在9世纪,源自北欧的瓦良格人武士精英建立了基辅罗斯这个中世纪国家并开始统治。公元988年,国家从拜占庭帝国采纳了东正教会,随后由此开始,千年拜占庭与斯拉夫文化的融合成为了今日的俄罗斯文化。基辅罗斯最终解散分化为众多公国,被蒙古人逐一击破,并均在13世纪成为了金帐汗国的一部份。莫斯科大公自14世纪起逐渐崛起并统一周边俄罗斯诸侯国,在15世纪成功从金帐汗国独立,且成为了基辅罗斯文化和政治的继承者。16世纪起伊凡四世自称沙皇,自詡「第三羅馬」。在18世纪,俄罗斯沙皇国通过征服、吞并和探索而擴張。彼得一世稱帝成立了俄罗斯帝国,最終成為史上領土第三大帝国,疆域最大曾自中欧的波兰连绵至北美的阿拉斯加。 1917年俄国革命后,俄罗斯苏维埃联邦社会主义共和国成为了世界上第一个宪法意义上的社会主义国家,并成为随后成立的苏维埃社会主义共和国联盟的主体和其最大的加盟共和国。二战时期,苏联为同盟国的胜利扮演了决定性的角色。在战后其崛起成为公认的超级大国,并在冷战时期与美国互相竞争。苏联时期产生了20世纪的许多最重要的科技成就,其中包括世界第一颗人造地球卫星,以及首次将人类送入太空。在1990年,苏联为世界上第二大经济体,且拥有世界上最多的常备军人以及最多的大规模杀伤性武器库存。1991年苏联解体后,包括俄罗斯在内的15个共和国从原苏联独立;身為原蘇聯最大的加盟共和国,俄羅斯通过修宪改制为俄罗斯联邦,成为原苏联的唯一法理继承国家,政體採用聯邦制、民主共和制及半总统制。 截至2015年,俄罗斯根据国民生产总值为世界第13大经济体,根据购买力平价为世界第六大经济体。俄罗斯拥有世界上最大储量的矿产和能源资源,是世界上最大的石油和天然气输出国.

新!!: 粒子物理學和俄罗斯 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 粒子物理學和化學 · 查看更多 »

北京正负电子对撞机

北京正负电子对撞机(Beijing Electron Positron Collider,缩写:BEPC)是中国第一台高能粒子加速器,始建于1984年,位于北京西郊八宝山东侧。2004年至2009年间是重大的改造工程(称为BEPC II)。它主要用于高能物理研究,同时也可作出同步辐射、中能核物理、慢正电子等实验,是在粲物理能区具有国际先进水平的对撞机。.

新!!: 粒子物理學和北京正负电子对撞机 · 查看更多 »

國家同步輻射研究中心

國家同步輻射研究中心(英文:National Synchrotron Radiation Research Center;NSRRC),座落於新竹科學園區,共有兩座同步加速器光源設施,分別為--台灣光源--(Taiwan Light Source;TLS)與--台灣光子源--(Taiwan Photon Source;TPS)。 1993年10月台灣光源正式啟用,為台灣第一座,也是亞洲第一座完成的第三代同步輻射設施。台灣光源已有27條光束線及54座實驗站,提供台灣及全球各地之研究團隊進行科學實驗,另外在日本的SPring-8之BL12U與BL12B兩光束線,亦由NSRRC負責運轉與管理。 為能滿足光源用戶進行前沿的科學實驗需要超高亮度的X射線之需求,該中心與學術科技界經過多次的研討和評估,於2004年7月的董事會中決議推動新加速器光源之籌建,向政府提出台灣第二座同步輻射設施「台灣光子源跨領域實驗設施興建計畫」,將在現有基地上主導興建一座電子束能量30億電子伏特、周長518公尺、超低束散度的「台灣光子源」同步加速器。「台灣光子源興建工程」於2010年2月7日舉行動土典禮,且於2014年興建完成,於2015年開放光源與周邊實驗設施,提供學術科技界進行尖端科學研究之用,2016年9月19日正式啟用。.

新!!: 粒子物理學和國家同步輻射研究中心 · 查看更多 »

冷战

冷戰(Cold War)指的是第二次世界大战之后,以美國及英國為首的--、與以蘇聯為首的--之間长达半世纪的政治對抗。一般认为,冷战始于1947年美国提出“杜鲁门主义”,结束于1989年苏东剧变。在二戰結束後,原先結盟對抗納粹德國的美國及蘇聯成為世界上僅有的兩個超級大國,但兩國持有不同的經濟和政治體制:美國及其他北約成员国为資本主義陣營,而蘇聯及其他华约成员国則为社会主义阵营,兩方也因此展開了數十年的對立。冷戰的名稱來自於雙方從未正式交戰的特點,因為在冷戰期間,美蘇雙方所持有的大量核武器,為兩國帶來相互保證毀滅能力。 在數十年的冷戰中,雙方的關係和冷戰的激烈性也不斷變化。重大的幾次衝突事件包括了第二次國共內戰(1946年—1949年)、柏林封鎖(1948年—1949年)、朝鲜战争(1950年—1953年)、第二次中東戰爭(1956年)、古巴飛彈危機(1962年)、越南战争(1959年—1975年)、蘇聯-阿富汗戰爭(1979年—1989年)、蘇聯擊落大韓航空007號班機(1983年)、以及北約優秀射手演習(1983年)等等。他們透過軍事的結盟、戰略部隊的佈署、對第三國的支援、間諜和宣傳、科技競爭(如太空競賽)以及核武器和傳統武器的軍備競賽來進行非直接的對抗。美蘇兩方在許多第三世界的國家進行了一系列政治和軍事的衝突,包括了拉丁美洲、非洲、中東、和東南亞地帶。為了減緩核戰爭的風險,兩方曾在1970年代試圖以緩和政策減緩軍事對立。 從1980年代開始美國就在總統隆納·雷根政府的執政下,對蘇聯發起了一系列外交、軍事和經濟上的攻勢和施壓,再加上社会主义阵营本身的經濟發展陷入了嚴重的停滯,因此,在1980年代中期,蘇聯在新任蘇共中央總書記戈巴契夫的領導下,實施了經濟改革(1987年)和開放政策(1985年)。然而東歐國家從蘇聯獨立的傾向卻只增不減,尤其以波蘭的團結工聯最為突出。種種壓力累積之下,戈巴契夫在1989年停止了對東德的支援,導致了蘇聯旗下的衛星國,在數週內一一脫離,令蘇聯最後在1991年年底徹底解體,資本主義反共陣營取得勝利。在冷戰結束後,美國成為了世界上唯一的超級大國。冷戰使當時無數國家的命運和人民的生活都發生重大改變,留下的影響更有不少存留至今。此外冷戰中的核戰爭和間諜戰、高科技軍備等成分也成為了大眾文化常見的題材。.

新!!: 粒子物理學和冷战 · 查看更多 »

元素周期表

化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.

新!!: 粒子物理學和元素周期表 · 查看更多 »

光子

| mean_lifetime.

新!!: 粒子物理學和光子 · 查看更多 »

前子

前子(Preon)是在理论上构成夸克和轻子的亚原子粒子 。这个粒子的名称首先由和阿卜杜勒·萨拉姆于1974年提出。.

新!!: 粒子物理學和前子 · 查看更多 »

固体物理学

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.

新!!: 粒子物理學和固体物理学 · 查看更多 »

Belle實驗

貝爾實驗(Belle experiment)為世界上兩大B介子工廠之一,是一個國際合作的實驗計畫,使用日本高能加速器研究機構的KEKB加速器來進行CP對稱性破壞的研究。 貝爾實驗的名稱Belle由來,乃是因為此實驗的研究需要產生大量的B介子,而產生的來源是由電子(electron)與正電子(電子的鏡像反粒子,el)對撞生成的。 參與此實驗的研究團隊包含有來自17個國家,超過400位物理學家與技術人員所組成的。.

新!!: 粒子物理學和Belle實驗 · 查看更多 »

筑波市

筑波市()是位於日本茨城縣南部的都市,以坐落於此的筑波科學城(筑波研究學園都市)為人熟知,集中了筑波大学、、國土地理院等多個學術與研究機構。目前亦獲日本政府指定為業務核都市與。截止至2016年7月1日的统计数据,筑波市人口达到229,610人,共99,738户,人口密度为809人/平方公里;全市面积为283.72平方公里。 筑波市距離東京都心約50公里,與東京都心之間透過筑波快線連接。筑波科學城以外的地域,分布著农业用土地、山林和村落。筑波山位于筑波市附近,以蟾蜍形状的筑波山神社而闻名。.

新!!: 粒子物理學和筑波市 · 查看更多 »

粒子

物理科學中,粒子為佔有微小局域的物体,能夠以數個物理性质或化学性质,如体积或质量加以描述。.

新!!: 粒子物理學和粒子 · 查看更多 »

粒子加速器

粒子加速器(particle accelerator)是利用電場來推動帶電粒子使之獲得高能量。日常生活中常見的粒子加速器有用於電視的陰極射線管及X光管等設施。只有当被加速的粒子置於抽真空的管中时,才不會被空氣中的分子所撞擊而潰散。在高能加速器裡的粒子由四極磁鐵(quadrupole magnet)聚焦成束,使粒子不會因為彼此間產生的排斥力而散開。 粒子加速器有兩種基本型式,環形加速器和直線加速器。.

新!!: 粒子物理學和粒子加速器 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 粒子物理學和粒子物理學 · 查看更多 »

约翰·道尔顿

约翰·道尔顿(John Dalton,,--,英国皇家学会成员,化学家、物理学家。近代原子理论的提出者,对色盲亦有研究。.

新!!: 粒子物理學和约翰·道尔顿 · 查看更多 »

约瑟夫·汤姆孙

约瑟夫·汤姆孙爵士,OM,FRS(Sir Joseph John Thomson,,簡稱J.J.Thomson),英国物理学家,电子的发现者。.

新!!: 粒子物理學和约瑟夫·汤姆孙 · 查看更多 »

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

新!!: 粒子物理學和美国 · 查看更多 »

瑞士

士联邦(Schweizerische Eidgenossenschaft;Confédération suisse;Confederazione Svizzera;Confederaziun svizra;正式称呼采用Confœderatio Helvetica,因此瑞士的ISO 3166双拉丁字母国家代号是“CH”)通稱瑞士(Schweiz;Suisse;Svizzera;Svizra),為中欧或者西歐國家之一,劃分為26個州。瑞士為聯邦制國家,伯爾尼是联邦政府所在地。瑞士北靠德国,西邻法国,南接意大利,东临奥地利和列支敦士登。 瑞士屬内陆山地國家,地理上分為阿爾卑斯山、瑞士高原及侏羅山脈三部分,面积41,285平方公里,阿爾卑斯山佔國土大部分面積,而800萬人口中,大多分布於瑞士高原,瑞士高原也是瑞士主要城市如經濟中心蘇黎世及日內瓦的所在地。瑞士因自然風光及氣候條件而有「世界公園」的美譽。 瑞士一開始有僱傭兵制度,後來才改採武裝中立,自1815年維也納會議後從未捲入过國際战争,瑞士自2002年起才成為聯合國正式會員國,但瑞士實行積極外交政策且頻繁參與世界各地的重建和平活動;瑞士為红十字国际委员会的發源地且為许多国际性组织总部所在地,如联合国日内瓦办事处。在歐洲區域組織方面,瑞士為欧洲自由贸易联盟的創始國及申根区成員國,但並非欧盟及歐洲經濟區成員國。 依照人均国民生产总值,瑞士是世界最富裕的国家之一,同時瑞士人均財富也居(除摩纳哥之外的)世界首位。依國際匯率計算,瑞士為世界第19大經濟體;以购买力平价計算則為世界第39大經濟體;出口額及進口額分別居世界第20位及第18位。瑞士由3個主要語言及文化區所組成,分別為德语區、法语區及意大利语區,而後加入了罗曼什语區。雖然瑞士人中德語人口居多數,但瑞士並未形成單一民族及語言的國家,而且其國民中外國出生的比例相當高。對國家強烈的歸屬感則來自於共同的歷史背景及價值觀,如联邦主义及直接民主制等。傳統上以瑞士永久同盟於1291年8月初締結為建國之初始,而8月1日是瑞士國慶日。.

新!!: 粒子物理學和瑞士 · 查看更多 »

生物学

生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.

新!!: 粒子物理學和生物学 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 粒子物理學和电子 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 粒子物理學和物理学 · 查看更多 »

物质

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E.

新!!: 粒子物理學和物质 · 查看更多 »

芝加哥

芝加哥(Chicago)位于美国中西部,属伊利诺伊州,為库克县縣治,东临密歇根湖,辖区内人口约290万。芝加哥及其郊区组成的大芝加哥地区,人口超过900万,是美国仅次于紐約、洛杉矶的第三大都会区。芝加哥的奥黑尔国际机场也是美國第二繁忙的机场。芝加哥地处北美大陆的中心地带,為美国最重要的铁路、航空樞紐。芝加哥同時也是美国主要的金融、期货和商品交易中心之一。自1837年建市以来,经过一百多年的发展,逐渐成为具有世界影响力的大都市之一。芝加哥常见的别名包括:“风城”等。 2014年全球城市排名中排名第7位。.

新!!: 粒子物理學和芝加哥 · 查看更多 »

规范玻色子

规范玻色子是传递基本相互作用的媒介粒子,它们的自旋都为整数,属于玻色子,它们在粒子物理学的标准模型内都是基本粒子。 规范玻色子包括:.

新!!: 粒子物理學和规范玻色子 · 查看更多 »

詹姆斯·查德威克

詹姆斯·查德威克爵士,CH,FRS(Sir James Chadwick,),英国物理学家,因於1932年发现中子而获1935年诺贝尔物理学奖。1941年,他为核武器报告的最後稿本执笔,这份报告促使美國政府開始积极进行核武器研究。第二次世界大戰期間,他担任曼哈頓計劃英國小組的組長。因對物理學的貢獻,他於1945年在英格蘭被冊封為爵士。.

新!!: 粒子物理學和詹姆斯·查德威克 · 查看更多 »

高能加速器研究機構

能加速器研究機構(高エネルギー加速器研究機構,簡稱KEK)原為隸屬於日本文部省的國家實驗室,於2004年改制為法人後,隸屬於日本大學共同利用機關法人,為高能物理學與加速器科學的綜合研究機構。KEK最早是在1997年4月1日,由原來的高能物理研究所、東京大學原子核研究所以及東京大學理學院所附屬的介子科學研究中心改組而成的,成為一所綜合研究所大學(綜合研究大學院大學)。 簡稱為KEK,是沿用原來的高能物理研究所的略稱。同時,原來的高能物理研究所,是日本最早提供全球資訊網服務的公開機構。 身為原高能物理研究所教授、基本粒子原子核研究所所長、歷任高能加速器研究機構理事、高能加速器研究機名譽教授(2009年1月為特別榮譽教授)的小林誠,在該機構的貝爾實驗數據的支持下,得到2008年的諾貝爾物理學獎。.

新!!: 粒子物理學和高能加速器研究機構 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 粒子物理學和诺贝尔物理学奖 · 查看更多 »

質子

|magnetic_moment.

新!!: 粒子物理學和質子 · 查看更多 »

费米国立加速器实验室

费米国立加速器实验室(Fermi National Accelerator Laboratory,缩写为Fermilab或FNAL),简称费米实验室,是隶属于美国能源部的一所国家实验室,位于美国伊利诺斯州巴达维亚附近的草原上。.

新!!: 粒子物理學和费米国立加速器实验室 · 查看更多 »

超对称

超对称是费米子和玻色子之间的一种對稱性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型強子對撞機將會驗證粒子是否有相對應的超對稱粒子這個疑問。 超對稱模型能解決三個難題:.

新!!: 粒子物理學和超对称 · 查看更多 »

超對稱粒子

在粒子物理學裏,超對稱粒子或超伴子是一種以超對稱聯係到另一種較常見粒子的粒子。在這物理理論中,每種費米子都應有一種玻色子“拍檔”(費米子的超對稱粒子),反之亦然。沒有“破缺”的超對稱預測:一顆粒子和其超對稱粒子都應有完全相同的質量。至今仍然沒有標準模型粒子的超對稱粒子被發現。這可能表示超對稱理論是錯誤的,或超對稱並不是一種“不破”的對稱性。如果超對稱粒子被發現,其質量會決定超對稱破裂時的尺度 就實純量的粒子(如軸子)而言,它們有一個費米子超對稱粒子,也有一個實純量場。 在延伸的超對稱裏,一種特定粒子可能會有多于一個超對稱粒子。舉例,在四維空間裏,一個光子會有兩個費米超對稱粒子和一個純量超對稱粒子。 在零維的情況下(常被稱作矩陣力學),有可能存在超對稱,但沒有超對稱粒子。然而,這只有在當超對稱性不包含超對稱粒子的情況下才成立。.

新!!: 粒子物理學和超對稱粒子 · 查看更多 »

超級質子同步加速器

超級質子同步加速器(Super Proton Synchrotron,缩写:SPS)是歐洲核子研究組織的粒子加速器之一。它被容纳在一个环形隧道中,有的周长,在瑞士日内瓦附近并横跨法国-瑞士的边界。.

新!!: 粒子物理學和超級質子同步加速器 · 查看更多 »

超级神冈探测器

超级神冈探测器(Super-Kamiokande,可縮寫為Super-K或SK;スーパーカミオカンデ),全名為超級神岡中微子探測實驗(Super-Kamioka Neutrino Detection Experiment),是日本東京大學在岐阜縣飛驒市神岡町的茂住礦山一个深达1000米的废弃砷矿中建造的大型中微子探测器。其目标是探测质子衰变以及被设计来寻找太阳、地球大气的中微子,并观测銀河系內超新星爆发。.

新!!: 粒子物理學和超级神冈探测器 · 查看更多 »

迴圈量子引力理論

#重定向 迴圈量子重力.

新!!: 粒子物理學和迴圈量子引力理論 · 查看更多 »

膠子

没有描述。

新!!: 粒子物理學和膠子 · 查看更多 »

重離子

重離子簡單的說就是比碳原子大的原子核或離子(像是碳、矽、鎢、金、鉛、或鈾的原子核),在核子物理學中,重離子通常用來製造更重的元素或同位素,像是把氪-86轟炸鉛-208的原子核,就會產生新的元素Og。 Category:离子 Category:物理化學.

新!!: 粒子物理學和重離子 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 粒子物理學和量子力学 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 粒子物理學和量子场论 · 查看更多 »

量子色動力學

量子色动力学(Quantum Chromodynamics,简称QCD)是一个描述夸克胶子之间强相互作用的标准动力学理论,它是粒子物理标准模型的一个基本组成部分。夸克是构成重子(质子、中子等)以及介子(、等)的基本单元,而胶子则传递夸克之间的相互作用,使它们相互结合,形成各种核子和介子,或者使它们相互分离,发生衰变等。多年来量子色动力学已经收集了庞大的实验证据。 量子色动力学是规范场论的一个成功运用,它所对应的规范群是非阿贝尔的SU(3)群,群量子数被称为“颜色”或者“色荷”。每一种夸克有三种颜色,对应着SU(3)群的基本表示。胶子是作用力的传播者,有八种,对应着SU(3)群的伴随表示。这个理论的动力学完全由它的SU(3)规范对称群决定。 量子色动力学享有2种特有的属性:.

新!!: 粒子物理學和量子色動力學 · 查看更多 »

自然

自然(英文:Nature),是指不断运行演化的宇宙萬物,包括生物界和非生物界两个相辅相成的体系。 人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统等;宇宙间的天使粒子、次原子粒子、星系星云和黑洞白洞等。 人类不能理解地宗教信仰、灵魂观念和神明信念等现象,被称为超自然现象。 从对超自然现象的探索,到对自然现象的认知,是人类逐渐理解自己、适应生存环境和丰富社会活动的过程。例如,古时,火是神明,日月星辰是超自然现象;如今,卫星、电视、电脑和手机成为了神话中的千里眼和顺风耳;区块链成了全球共识共享的无字天书。.

新!!: 粒子物理學和自然 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 粒子物理學和金 · 查看更多 »

長島

長島可以指:.

新!!: 粒子物理學和長島 · 查看更多 »

艾萨克·牛顿

艾萨克·牛顿爵士,(Sir Isaac Newton,,英語發音)是一位英格兰物理学家、数学家、天文学家、自然哲学家和煉金術士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个世纪--力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。.

新!!: 粒子物理學和艾萨克·牛顿 · 查看更多 »

苏联

苏维埃社会主义共和国联盟( ),简称苏联(),是一個存在於1922年至1991年的聯邦制社會主義國家,也是當時世界上土地面積最大的國家,佔有東歐的大部分,以及幾乎整個中亞和北亞;陸地與挪威、芬蘭、波蘭、捷克斯洛伐克、匈牙利、羅馬尼亞、土耳其、伊朗、阿富汗、中国、蒙古及朝鮮接壤;而與瑞典、日本、美國及加拿大隔海相望。 蘇聯起源自1917年的俄國革命,俄羅斯帝國的沙皇政府被推翻後,臨時政府成立,但僅執政了不到8個月,布爾什維克便很快從臨時政府手中奪取政權並於選舉後武力解散俄國立憲會議,史稱十月革命及一月劇變;之後俄國發生內戰,布尔什维克党領導的紅軍擊敗了白軍以及協約國的武裝干涉。1922年12月,俄羅斯、白俄羅斯、烏克蘭和外高加索等蘇維埃社會主義共和國合併,成立首個以社會主義為理念的國家——蘇聯。 第一任蘇聯領導人弗拉基米尔·列宁於1924年去世後,约瑟夫·斯大林從一連串的權力鬥爭中勝出,取得了領導權。斯大林以計劃經濟作保障,在歐美經濟危機期間推行驚人的大規模重工業化,但也進行多次大清洗,導致逾百萬人在政治鬥爭中被整肅或被殺。第二次世界大戰中,蘇聯先是与纳粹德国结盟,於1939年和德國共同瓜分了波蘭、将波罗的海国家纳入版图、割占罗马尼亚领土,将流亡苏联的德国政治难民交还纳粹判決。不過很快兩者關係破裂,1941年6月22日,苏联遭到德國等軸心國入侵,歷經了4年激烈的戰事後取得了勝利,與美國一同成為當時世界上最強大的兩個國家,被稱為超級大國,同時因出兵击退入侵德军,并得以控制了東歐大部分國家。 蘇聯而後與衛星國組成的華沙条約組織(華約),與以美國為首的北大西洋公約組織(北約)對峙,這兩大軍事集團在冷戰時期於全世界展開意識形態的對立和政治鬥爭,但在1980年代初期,石油以及初級資源價格回落,此時的蘇聯大力施行福利國家政策,致经济增长速度变慢,加上政治欠乏改革,基本的人民自由也陷入壓抑,苏联的国力已经落后于美国。 在1980年代末,蘇聯領導人米哈伊爾·戈爾巴喬夫試圖進行改革政策,將國家自由化和民主化,放寬對東歐等其他衛星國的控制,却导致蘇聯在1991年解體,在政治斗争中获胜的葉爾欽所領導的俄羅斯聯邦繼承了蘇聯主要的軍事、經濟和國際地位,但人口損失近半的情況下,蘇聯建立的紅色秩序已經不復存在。 儘管苏联宪法規範苏联是一個联邦制国家,由15个平等权利的苏维埃社会主义共和国(加盟共和国)按照自愿联合的原则组成,但其联邦特性不高,因為中央政府權力高度集中,並奉行世界上第一個完全的社會主義制度及計劃經濟政策,由蘇聯共產黨一黨執政。在1945年苏联16个加盟共和国中应有2个(乌克兰、白俄罗斯)应作为联合国创始会员国,因为苏联是联邦制国家,所以苏联在联合国历史上是唯一一个“一国三票”的主权国家。.

新!!: 粒子物理學和苏联 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

新!!: 粒子物理學和電磁力 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 粒子物理學和電荷 · 查看更多 »

W及Z玻色子

在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.

新!!: 粒子物理學和W及Z玻色子 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: 粒子物理學和核聚变 · 查看更多 »

核裂变

核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.

新!!: 粒子物理學和核裂变 · 查看更多 »

标准模型

在粒子物理學裏,標準模型(Standard Model,SM)是描述強力、弱力及電磁力這三種基本力及組成所有物質基本粒子的理論,屬於量子場論的範疇,並與量子力學及狭义相對論相容。到目前為止,幾乎所有對以上三種力的實驗的結果都合乎這套理論的預測。但是標準模型還不是萬有理論,主要是因為還沒有描述引力。.

新!!: 粒子物理學和标准模型 · 查看更多 »

次原子粒子

次原子粒子,或稱亚原子粒子。是指比原子還小的粒子。例如:電子、中子、質子、介子、夸克、膠子、光子等等。.

新!!: 粒子物理學和次原子粒子 · 查看更多 »

欧内斯特·卢瑟福

欧内斯特·卢瑟福,第一代尼爾森的卢瑟福男爵,OM,FRS(Ernest Rutherford, 1st Baron Rutherford of Nelson,),新西兰物理学家,世界知名的原子核物理學之父。學術界公認他為繼法拉第之後最偉大的實驗物理學家。 卢瑟福首先提出放射性半衰期的概念,證實放射性涉及從一個元素到另一個元素的--。他又將放射性物質按照貫穿能力分類為α射線與β射線,並且證實前者就是氦離子。因為「对元素蜕变以及放射化学的研究」,他榮獲1908年諾貝爾化學獎。 卢瑟福領導團隊成功地證實在原子的中心有個原子核,創建了卢瑟福模型(行星模型)。他最先成功地在氮與α粒子的核反應裏將原子分裂,他又在同實驗裏發現了質子,並且為質子命名。第104号元素为纪念他而命名为“鑪”。.

新!!: 粒子物理學和欧内斯特·卢瑟福 · 查看更多 »

歐洲核子研究組織

歐洲核子研究組織(法语:Organisation Européenne pour la Recherche Nucléaire;英文:European Organization for Nuclear Research,通常被簡稱為CERN ),是世界上最大的粒子物理學實驗室,也是全球資訊網的發祥地。它成立於1954年9月29日,總部位於瑞士日內瓦西北部郊區的法瑞邊境上,享有治外法權。CERN目前有21個成員國。以色列是第一個也是目前唯一一個非歐洲成員國。 CERN也被用來稱呼它的實驗室,其主要功能是為高能物理學研究的需要,提供粒子加速器和其它基礎設施,以進行許多國際合作的實驗。同時也設立了資料處理能力很強的大型電腦中心,協助實驗數據的分析,供其他地方的研究員使用,形成了一個龐大的網絡中樞。 歐洲核子研究組織現在已經聘用大約三千名的全職員工。並有來自80個國籍的大約6500位科學家和工程師,代表500餘所大學機構,在CERN進行試驗。這大約佔了世界上的粒子物理學圈子的一半。 粒子物理學博物館歡迎一般公眾在辦公時間參觀。除此之外,事前預約的話每天上下午共有兩個時段可以參觀實際的實驗工作,並備有導覽說明。導覽員來自各國的實驗合作者,可以提供多種語言的嚮導。.

新!!: 粒子物理學和歐洲核子研究組織 · 查看更多 »

正電子

正电子(又称陽電子、反電子、正子,Positron),是電子的反粒子,即電子的對應反物質。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。 正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。 当能量超过1.02兆电子伏特的光子经过原子核附近时(成對產生),或者在放射性元素的正β衰变中(通過弱相互作用),都有可能产生正电子。 1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。.

新!!: 粒子物理學和正電子 · 查看更多 »

汉堡

漢堡(;, 当地发音:; 低地德语/低地撒克逊语:Hamborg)),全称为汉堡汉萨自由市(Freie und Hansestadt Hamburg)汉堡宪法 ,位于德国北部的一个港口城市。汉堡拥有近180万人口,是仅次于柏林的德国第二大城市,欧盟第八大城市。作为一個城邦,其行政级别有其联邦州议会和州立法委员会。汉堡及其周围城镇共有274万人口,而汉堡大城市群则有500万人口。 汉堡港位于易北河出海口,是德国最大的港口,也是世界上第20大港口。同时因为包括汉堡机场和众多轨道交通,汉堡是欧洲物流的最重要的枢纽之一。汉堡经济主要为高科技经济,包括航空航天工程企业(空中客车)、生命科学企业、信息技术企业、制成品企业(拜尔斯道夫和联合利华),同时作为一个媒体中心其拥有发达的文化产业。.

新!!: 粒子物理學和汉堡 · 查看更多 »

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

新!!: 粒子物理學和波 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 粒子物理學和波粒二象性 · 查看更多 »

法国

法兰西共和国(République française ),簡稱法国(France ),是本土位於西歐並具有海外大區及領地的主權國家,自法蘭西第五共和國建立以來实行单一制與半总统制,首都為歐盟最大跟歐洲最大的文化與金融中心巴黎。該國本土由地中海一直延伸至英倫海峽及北海,並由萊茵河一直延伸至大西洋,整體呈六角狀。海外领土包括南美洲的法属圭亚那及分布于大西洋、太平洋和印度洋的诸岛屿。全国共分为18个大区,其中5个位于海外。法国與西班牙及摩洛哥為同時擁有地中海及大西洋海岸線的三個國家。法國的国土面积全球第四十一位,但卻為歐盟及西歐國土面積最遼闊的國家,歐洲面積第三大國家。 今日之法国本土于铁器时代由高卢人(凯尔特人的一支)征服,前51年又由罗马帝国吞并。486年法兰克人(日耳曼人的一支)又征服此地,其于该地域建立的早期国家最终发展成为法兰西王国。法国至中世纪末期起成为欧洲大国,國力於19-20世紀時達致巔峰,建立了世界第二大殖民帝國,亦為20世紀人口最稠密的國家,現今則是众多前殖民地的首選移民国。在漫長的歷史中,法國培養了不少對人類發展影響深遠的著名哲學家、文學家與科學家,亦為文化大国,具有第四多的世界遺產。 法國在全球範圍內政治、外交、軍事與經濟上為舉足輕重的大國之一。法國自1958年建立第五共和国後經濟有了很大的發展,政局保持穩定,國家體制實行半總統制,國家經由普選產生的總統、由其委任的總理與相關內閣共同執政。1958年10月4日,由公投通過的國家憲法則保障了國民的民主權及宗教自由。法國的建國理念主要建基於在18世紀法國大革命中所制定的《人權和公民權宣言》,此乃人類史上較早的人權文檔,並對推動歐洲以至於全球的民主與自由產生莫大的影響;其藍白紅三色的國旗則有「革命」的含義。法國不僅為聯合國常任理事國,亦是歐盟始創國。該國國防預算金額為全球第5至6位,並擁有世界第三大核武貯備量。法國為发达国家,其GDP為全球第六大經濟體系,具備世界第十大購買力,並擁有全球第二大專屬經濟區;若以家庭總財富作計算,該國是歐洲最富有的國家,位列全球第四。法國國民享有高生活質素,在教育、預期壽命、民主自由、人類發展等各方面均有出色的表現,特別是醫療研發與應用水平長期盤據世界首位。其國內許多軍備外銷至世界各地。目前,法国是。.

新!!: 粒子物理學和法国 · 查看更多 »

混沌理论

混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation)、周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论。在耗散系统和保守系统中,混沌运动有不同表现,前者有吸引子,后者无(也称含混吸引子)。 从20世纪80年代中期到20世纪末,混沌理论迅速吸引了数学、物理、工程、生态学、经济学、气象学、情报学等诸多领域学者有关注,引发了全球混沌热。混沌,也写作浑沌(比如《庄子》)。自然科学中讲的混沌运动指确定性系统中展示的一种類似随机的行为或性态。确定性(deterministic)是指方程不含随机项的系统,也称动力系统(dynamical system)。典型的模型有單峰映象(logistic map)迭代系统,洛伦兹微分方程系统,若斯叻吸引子,杜芬方程,蔡氏电路,陳氏吸引子等。为浑沌理论做出重要贡献的学者有庞加莱、洛伦兹、(Y.

新!!: 粒子物理學和混沌理论 · 查看更多 »

新竹科學工業園區

新竹科學工業園區(簡稱新竹科學園區、竹科)是臺灣的第一座科學園區,涵蓋範圍橫跨新竹市東區與新竹縣寶山鄉,園區內廠商以經營電子代工服務為主,是中華民國高度發展高科技代工產業的主要科技重鎮之一,有「台灣矽谷」之稱。 成立至今有400家以上高科技代工業、服務業廠商進駐,主要產業包括有半導體業、電腦業、通訊業、光電業、精密機械業與生物技術業,是全球半導體製造業最密集的地方之一,目前已開發新竹園區約632公頃與竹南園區約141公頃,約有12萬人在園區工作。經過多年開發,新竹科學園區逐漸成為北台灣的科技產業中心,並且按國家發展計畫擴大基地,目前擴充計畫包括桃園龍潭園區、苗栗銅鑼園區、新竹生物醫學園區以及宜蘭園區。亦由於其成功經驗,中華民國政府陸續在台灣其他地區設立中科及南科。但這些產業伴隨著高污染的副產品,因此半導體製造業皆為環保及健康問題,為歐美國家所不能接受,因此法規及執法寬鬆的台灣成為最適合的設廠地點,也是世界半導體製造的重鎮之一,且以竹科為首,創造了不少經濟及工作機會,如台積電等知名公司皆在此設置據點。.

新!!: 粒子物理學和新竹科學工業園區 · 查看更多 »

新西伯利亚

新西伯利亚(Новосиби́рск,罗马化:Novosibirsk)是俄罗斯的一个城市,建城于1893年。行政区位上新西伯利亚是新西伯利亚州(Новосибирская о́бласть)的首府,该州则属于俄罗斯八个联邦管区之一——西伯利亚联邦管区(Сиби́рский федера́льный о́круг)的一部份,也是整个西伯利亚地区最大的城市。該城市也是西伯利亞聯邦管區的首府所在地。 位於俄國中部人口密集區的重要地帶,新西伯利亚有160萬的人口,是俄罗斯国内仅次于莫斯科与圣彼得堡,人口第三多的城市。该城境内工厂非常多,并拥有一些俄罗斯最好的大学、博物馆和剧场。.

新!!: 粒子物理學和新西伯利亚 · 查看更多 »

日内瓦

日内瓦(; Genève,; Genèva, and Genf; )是瑞士第二大城市,日内瓦州首府。建在日内瓦湖流入羅訥河之處。今天,日内瓦在国际上享有的高知名度主要得益于这里無數的國際組織,包括联合国日内瓦办事处。 日内瓦是一座著名的國際都市,在兩次世界大戰之間,國際聯盟的總部就是設立在此地。今天仍有許多國際組織在日內瓦設立總部或办事处,包括有红十字會的總部。屬於聯合國的組織有世界衛生組織等。.

新!!: 粒子物理學和日内瓦 · 查看更多 »

日本

日本國(),是位於東亞的島嶼國家,由日本列島、琉球群島和伊豆-小笠原群島等6,852個島嶼組成,面積約37.8万平方公里。國土全境被太平洋及其緣海環抱,西鄰朝鮮半島及俄罗斯,北面堪察加半島,西南為臺灣及中國東部。人口達1.26億,居於世界各國第11位,當中逾3,500萬以上的人口居住於東京都與周邊數縣構成的首都圈,為世界最大的都市圈。政體施行議會制君主立憲制,君主天皇為日本國家與國民的象徵,實際的政治權力則由國會(參眾兩院)、以及內閣總理大臣(首相)所領導的內閣掌理,最高法院為最高裁判所。 傳說日本於公元前660年2月11日,由天照大神之孫下凡所生之後代磐余彥尊所建,在公元4世紀出現首個統一政權,並於大化改新中確立了天皇的中央集权體制。至平安時代結束前,日本透過文字、宗教、藝術、政治制度等從漢文化引進的事物,開始衍生出今日為人所知的文化基礎。12世紀後的六百年間,日本由武家階級建立的幕府實際掌權。17世纪起江户幕府頒布锁国令,至1854年被迫開港才結束。此後,日本在西方列強進逼的時局下,首先天皇從幕府手中收回統治權,接著在19世紀中期的明治维新進行大規模政治與經濟改革,實現工業化及現代化;而自19世纪末起,日本首先兼併琉球,再拿下台灣、朝鮮、樺太等地為屬地。進入20世紀時,日本已成為當時世界的帝國主義強權之一,也是當時東方世界唯一的大國。日本後來成為第二次世界大戰的軸心國之一,對中國與南洋發動全面侵略,但最终於1945年戰敗投降。日本投降至1952年《旧金山和约》生效前,同盟国军事占领日本,並監督日本制定新憲法、建立今日所見的政治架構,日本轉型為以國會為中心的民主政體,天皇地位虛位化,並依照憲法第九條放棄維持武装以及宣戰權。而日本雖在法律上實施非武裝化,出於自我防衛上的需要,仍擁有功能等同於其他國家軍隊的自衛隊。 日本是世界第三大經濟體,亦為七大工業國組織成員,是世界先進國家之一,主要奠基於日本經濟在二戰後的巨幅增長。現時日本的科研能力、工業基礎和製造業技術均位居世界前茅,並是世界第四大出口國和進口國。2015年,日本的人均國內生產總值依國際匯率可兌換成為三萬二千,人均國民收入則在三萬七千美元左右,人類發展指數亦一直維持在極高水平。.

新!!: 粒子物理學和日本 · 查看更多 »

整体论

#重定向 整全觀.

新!!: 粒子物理學和整体论 · 查看更多 »

重定向到这里:

粒子物理粒子物理学粒子物理学家高能物理高能物理學

传出传入
嘿!我们在Facebook上吧! »