徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

可定向性

指数 可定向性

欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t).

41 关系: 基本群反射 (数学)同倫群同胚定向定向 (数学)实射影平面宇宙一般线性群平面交错群体积形式微分形式微分流形利手嵌入光滑函数克莱因瓶矩阵环面球 (数学)球面空間笛卡儿积纤维丛置换的奇偶性莫比乌斯带行列式覆疊空間连通连通空间镜像連續函數 (拓撲學)陪集欧几里得几何欧几里得空间法线流形时空曲面3-流形

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

新!!: 可定向性和基本群 · 查看更多 »

反射 (数学)

在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有反射对称性。 密切关联于反射的是斜反射和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。.

新!!: 可定向性和反射 (数学) · 查看更多 »

同倫群

在數學中,同倫群是拓撲空間的一種同倫不變量。同倫群的研究是同倫理論的基石之一,一般空間的同倫群極難計算,即使對球面 S^n 的情形,至今也沒有完整結果。.

新!!: 可定向性和同倫群 · 查看更多 »

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

新!!: 可定向性和同胚 · 查看更多 »

定向

定向,在不同语境中有不同含义,可能指.

新!!: 可定向性和定向 · 查看更多 »

定向 (数学)

#重定向 定向 (向量空間).

新!!: 可定向性和定向 (数学) · 查看更多 »

实射影平面

在数学中,实射影平面(real projective plane)是R3中所有过原点直线组成的空间,通常记作\mathbbP^2,无歧义时也记为P^2。这是一个不可定向、紧致、无边界二维流形(即一个曲面),它在几何中有基本的应用,但不能无自交地嵌入我们通常的三维欧几里得空间。它的亏格是1,故欧拉示性数也为1。 实射影平面有时描述为基于莫比乌斯带的构造:如果能把莫比乌斯带的(一条)边以恰当的方向黏合,将得到射影平面。等价地,沿着莫比乌斯带的边界黏合一个圆盘给出射影平面。 由于莫比乌斯带可构造为将正方形的一组对边反向黏合,从而实射影平面可以表示为单位正方形( × )将它的边界通过如下等价关系等同: 以及 即如右图所示。因为正方形同构于圆盘,故这也等价于将圆盘边界的对径点黏合。.

新!!: 可定向性和实射影平面 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 可定向性和宇宙 · 查看更多 »

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

新!!: 可定向性和一般线性群 · 查看更多 »

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

新!!: 可定向性和平面 · 查看更多 »

交错群

数学中,交错群(alternating group)是一个有限集合偶置换之群。集合 上的交错群称为 n 阶交错群,或 n 个字母上的交错群,记做 An 或 Alt(n)。 例如,4 阶交错群是 A4.

新!!: 可定向性和交错群 · 查看更多 »

体积形式

数学中,体积形式提供了函数在不同坐标系(比如球坐标和圆柱坐标)下对体积积分的一种工具。更一般地,一个体积元是流形上一个测度。 在一个定向n-维流形上,体积元典型地由体积形式生成,所谓体积元是一个处处非零的n-阶微分形式。一个流形具有体积形式当且仅当它是可定向的,而可定向流形有无穷多个体积形式(细节见下)。 有一个推广的伪体积形式概念,对无论可否定向的流形都存在。 许多类型的流形有典范的(伪)体积形式,因为它们有额外的结构保证可选取一个更好的体积形式。在复情形,一个带有全纯体积形式的凯勒流形是卡拉比-丘流形。.

新!!: 可定向性和体积形式 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 可定向性和微分形式 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 可定向性和微分流形 · 查看更多 »

利手

利手、撇子是人类习惯所使用的手,某些人更习惯使用右手,称为右利手,某些人习惯使用左手,称为左利手,而能靈活的運用雙手的稱為兩手同利或雙撇子。.

新!!: 可定向性和利手 · 查看更多 »

嵌入

嵌入可以指:.

新!!: 可定向性和嵌入 · 查看更多 »

光滑函数

光滑函数(smooth function)在数学中特指无穷可导的函数,也就是说,存在所有有限阶导数。若一函数是连续的,则称其为C^0函数;若函数存在导函数,且其導函數連續,則稱為连续可导,記为C^1函数;若一函数n阶可导,并且其n阶导函数连续,则为C^n函数(n\geq 1)。而光滑函数是对所有n都属于C^n函数,特称其为C^\infty函数。 例如,指数函数显然是光滑的,因为指数函数的导数是指数函数本身。.

新!!: 可定向性和光滑函数 · 查看更多 »

克莱因瓶

在数学领域中,克莱因瓶(Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。 要想像克萊因瓶的結構,可先試想一個底部鏤空的紅酒瓶。現在延長其頸部,向外扭曲後伸進瓶子的內部,再與底部的洞相連接。 和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。 其名稱可能源自德語中的「Kleinsche Fläche」(克萊因平面),後來被誤解為「Kleinsche Flasche」(克萊因瓶)。德語最終也沿用了「克萊因瓶」這種稱呼。.

新!!: 可定向性和克莱因瓶 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 可定向性和矩阵 · 查看更多 »

环面

没有描述。

新!!: 可定向性和环面 · 查看更多 »

球 (数学)

在數學裡,球是指球面內部的空間。球可以是封閉的(包含球面的邊界點,稱為閉球),也可以是開放的(不包含邊界點,稱為開球)。 球的概念不只存在於三維歐氏空間裡,亦存在於較低或較高維度,以及一般度量空間裡。n\,\!維空間裡的球稱為n\,\!維球,且包含於n-1\,\!維球面內。因此,在歐氏平面裡,球為一圓盤,包含在圓內。在三維空間裡,球則是指在二維球面邊界內的空間。.

新!!: 可定向性和球 (数学) · 查看更多 »

球面

球面 (sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。 就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合 。 这个距离 是球的半径 ,球(ball)则是由离给定点距离小于 的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径 。 尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。.

新!!: 可定向性和球面 · 查看更多 »

空間

間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.

新!!: 可定向性和空間 · 查看更多 »

笛卡儿积

在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

新!!: 可定向性和笛卡儿积 · 查看更多 »

纤维丛

纖維--束(fiber bundle 或 fibre bundle)又稱纖維--叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射 \pi:E\rightarrow B E 和乘積空間 B × F 的局部類似性可以用映射 \pi 來說明。也就是說:在每個 E 的局部空間 U,都存在一個相同的F(F 稱作纖維空間),使得 \pi 限制在 U 上時 與直积空间 B × F 的投影 P:B\times F\mapsto B,\quad P(b, f).

新!!: 可定向性和纤维丛 · 查看更多 »

置换的奇偶性

在数学中,当X是一个至少有两个元素的有限集合时,X的置换(即从X到X的双射)可分为大小相同的两类:奇置换与偶置换。如果X固定了任何一个全序,X的一个置换\sigma的奇偶性可以定义为\sigma中反向对个数的奇偶性。所谓反向对即X中二元组x,y使得x且\sigma(x)>\sigma(y)。这里\sigma(x)为置换\sigma中第x位的元素。 一个置换\sigma的符号(sign或signature)记作sgn(σ):如果\sigma是偶数则定义为 +1,如果\sigma是奇数则定义为 -1。符号定义了对称群Sn的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号(\epsilon_\sigma),定义在X到X的所有映射上,而在非双射映射上取值为0。 置换的符号可以清晰地表达为 这里N(\sigma)是\sigma中反向对的个数。或者,置换\sigma的符号也可通过对换分解定义为 这里m是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。.

新!!: 可定向性和置换的奇偶性 · 查看更多 »

莫比乌斯带

莫比乌斯带(Möbiusband)又譯梅比斯環、莫比乌斯环或麦比乌斯带,是一种只有一个面(表面)和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家莫比乌斯和约翰·李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦類似。 莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是梅比斯環),再把剛剛做出那個把纸带的端头扭转了两次再结合的环從中間剪開,則變成兩個環。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一個三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。 莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的發明比莫比乌斯帶還更要早。.

新!!: 可定向性和莫比乌斯带 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 可定向性和行列式 · 查看更多 »

覆疊空間

在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.

新!!: 可定向性和覆疊空間 · 查看更多 »

连通

在数学中,连通可以指:.

新!!: 可定向性和连通 · 查看更多 »

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

新!!: 可定向性和连通空间 · 查看更多 »

镜像

像可以指:.

新!!: 可定向性和镜像 · 查看更多 »

連續函數 (拓撲學)

在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.

新!!: 可定向性和連續函數 (拓撲學) · 查看更多 »

陪集

数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.

新!!: 可定向性和陪集 · 查看更多 »

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

新!!: 可定向性和欧几里得几何 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 可定向性和欧几里得空间 · 查看更多 »

法线

三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。 法線是与多边形(polygon)的曲面垂直的理論線,一個平面(plane)存在無限個法向量(normal vector)。在電腦圖學(computer graphics)的領域裡,法線決定著曲面與光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。.

新!!: 可定向性和法线 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 可定向性和流形 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

新!!: 可定向性和时空 · 查看更多 »

曲面

在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.

新!!: 可定向性和曲面 · 查看更多 »

3-流形

數學上,3-流形(3-manifold)是三維流形。在三維情況,拓撲流形、分段線性流形、光滑流形三個範疇都等價,因此很少會著意提及3-流形是屬於哪一類。 三維中的現象,不時會與其他維數中的現象有大出意外的差別,所以有不少極專門的技術處理三維情況,不能推廣至其他維數。3-流形的特殊性,使人發現3-流形和很多不同領域有緊密關係,比如紐結理論、幾何群論、雙曲幾何、數論、拓撲量子場論、規範場論、Floer同調論、偏微分方程。3-流形理論是低維拓撲學的一部份,故此屬於幾何拓撲學。 3-流形理論的一個關鍵想法是考慮嵌入到流形內的特殊曲面。選擇嵌入「良好」的曲面,引出了不可壓縮曲面和哈肯(Haken)流形概念。選擇嵌入曲面使補集的各塊都「良好」,得出了比如Heegaard分解的結構,即使在非哈肯情況也有用場。 3-流形常有一個額外的結構:威廉·瑟斯頓的八種標準幾何結構之一。(其中以雙曲幾何最為普遍。)使用這些幾何結構再加上特別曲面,常得到豐碩的成果。 3-流形的基本群包含3-流形不少的幾何和拓撲資料,因此群論和拓撲方法得以相輔相成。.

新!!: 可定向性和3-流形 · 查看更多 »

重定向到这里:

不可定向流形可定向可定向流形

传出传入
嘿!我们在Facebook上吧! »