我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

霍奇对偶

指数 霍奇对偶

数学中,霍奇星算子(Hodge star operator)或霍奇对偶(Hodge dual)由苏格兰数学家威廉·霍奇(Hodge)引入的一个重要的线性映射。它定义在有限维定向内积空间的外代数上。.

目录

  1. 42 关系: 埃尔米特伴随半双线性形式叉积同构向量分析向量空间外代数外微分定向 (数学)对偶空间导子度量张量二項式係數伪黎曼流形体积形式微分形式德拉姆上同调切空间内积内积空间紧空间线性映射行列式麦克斯韦方程组黎曼流形霍奇理论范数蘇格蘭闵可夫斯基时空自同态Lp空间杨辉三角形梯度欧几里得空间截面 (纤维丛)旋度散度数学拉普拉斯算子拉普拉斯-贝尔特拉米算子1-形式2-形式

  2. 对偶理论
  3. 微分形式
  4. 微分算子
  5. 黎曼几何

埃尔米特伴随

数学上,特别是泛函分析中,希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。算子的伴随将方块矩阵共轭转置推广到(可能)无穷维情形。如果我们将希尔伯特空间上的算子视为“广义复数”,则一个算子的伴随起着一个复数的共轭的作用。 一个算子A的伴随常常也称为埃尔米特伴随(Hermitian adjoint,以夏尔·埃尔米特命名),记作A*或A†(后者尤其用于狄拉克符号记法)。.

查看 霍奇对偶和埃尔米特伴随

半双线性形式

在数学中,在复数向量空间V上的半双线性形式是映射V × V → C,它在一个参数上是线性的而在另一个参数上是反线性(半线性)的。比较于双线性形式,它在两个参数上都是线性的;要注意很多作者尤其是在只处理复数情况的时候,把半双线性形式称为双线性形式。 一个主要例子是在复数向量空间上的内积,它不是双线性的而是半双线性的。.

查看 霍奇对偶和半双线性形式

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

查看 霍奇对偶和叉积

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

查看 霍奇对偶和同构

向量分析

向量分析(或向量微積分)是數學的分支,关注向量場的微分和积分,主要在3维欧几里得空间 \mathbb^3 中。「向量分析」有时用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。向量分析在微分几何与偏微分方程的研究中起着重要作用。它被广泛应用于物理和工程中,特别是在描述电磁场、引力場和流体流动的时候。 向量分析从四元數分析发展而来,由约西亚·吉布斯和奧利弗·黑維塞於19世纪末提出,大多数符号和术语由吉布斯和黑維塞在他们1901年的书《向量分析》中提出。向量演算的常规形式中使用外积,不能推广到更高维度,而另一种的方法,它利用可以推广的外积,下文将会讨论。.

查看 霍奇对偶和向量分析

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

查看 霍奇对偶和向量空间

外代数

外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.

查看 霍奇对偶和外代数

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

查看 霍奇对偶和外微分

定向 (数学)

#重定向 定向 (向量空間).

查看 霍奇对偶和定向 (数学)

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

查看 霍奇对偶和对偶空间

导子

在抽象代数中,一个导子(derivation)是代数上的函数,推广了导数算子的某些特征。明确地,给定一个环或域 k 上一个代数 A,一个 k-导子是一个 k-线性映射 D: A → A,满足莱布尼兹法则: 更一般地,从 A 映到 A-模 M 的一个 k-线性映射 D,满足莱布尼兹法则也称为一个导子。A 所有到自身的 k-导子集合记为 Derk(A)。从 A 到 A-模 M 的所有 k-导子集合记为 Derk(A,M)。 导子在不同的数学领域以许多不同的面貌出现。关于一个变量的偏导数是 Rn 上实值可微函数组成的代数上的一个 R-导子。关于一个向量场的李导数是可微流形上可微函数代数上的 R-导子;更一般地,它是流形上张量代数的导子。Pincherle 导数是一个抽象代数上的导子的例子。如果代数 A 非交换,则关于 A 中一个元素的交换子定义了 A 到自身的线性映射,这是 A 的一个 k-导子。一个代数 A 装备一个特定的导子 d 组成了一个微分代数,这自身便是一些研究领域的一个重要对象,比如微分伽罗瓦理论。.

查看 霍奇对偶和导子

度量张量

在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.

查看 霍奇对偶和度量张量

二項式係數

二項式係數在數學上是二項式定理中的係數族。其必然為正整數,且能以兩個非負整數為參數確定,此兩參數通常以n和k代表,並將二項式係數寫作\tbinom nk ,亦即是二項式冪(1 + x) n的多項式展式中,x k項的係數。如將二項式係數的n值順序排列成行,每行為k值由0至n列出,則構成帕斯卡三角形。 此數族亦常見於其他代數學領域中,尤其是組合數學。任何有n個元素的集合,由其衍生出擁有k個元素的子集,即由其中任意k個元素的組合,共有\tbinom nk個。故此\tbinom nk亦常讀作「n選取k」。二項式係數的特性使表達式\tbinom nk的定義不再局限於n和k均為非負整數及,然此等表達式仍被稱為二項式係數。 雖然此數族早已被發現(見帕斯卡三角形),但表達式\tbinom nk則是由安德烈亚斯·冯·厄廷格豪森於1826年始用。最早探討二項式係數的論述是十世紀的Halayudha寫的印度教典籍《Pingala的計量聖典》(chandaḥśāstra),及至約1150年,印度數學家Bhaskaracharya於其著作《Lilavati》Lilavati 第6節,第4章(見)。 中給出一個簡單的描述。 二項式係數亦有不同的符號表達方式,包括:C(n, k)、nCk、nCk、C^_,其中的C代表組合(combinations)或選擇(choices)。.

查看 霍奇对偶和二項式係數

伪黎曼流形

伪黎曼流形(Pseudo-Riemannian manifold)是一光滑流形,其上有一光滑、对称、点点非退化的(0,2) 張量。此張量稱為伪黎曼度量或伪度量張量。 伪黎曼流形与黎曼流形的区别是它不需要正定(通常要求非退化)。因为每個正定形式都是非退化的,所以黎曼度量也是一个伪黎曼度量,亦即黎曼流形是伪黎曼流形的一种特例。 每一個非退化對稱,雙線性形式有一個固定的度量符号(p,q)。這裡p與q記作正特徵值及負特徵值的个数。注意p + q.

查看 霍奇对偶和伪黎曼流形

体积形式

数学中,体积形式提供了函数在不同坐标系(比如球坐标和圆柱坐标)下对体积积分的一种工具。更一般地,一个体积元是流形上一个测度。 在一个定向n-维流形上,体积元典型地由体积形式生成,所谓体积元是一个处处非零的n-阶微分形式。一个流形具有体积形式当且仅当它是可定向的,而可定向流形有无穷多个体积形式(细节见下)。 有一个推广的伪体积形式概念,对无论可否定向的流形都存在。 许多类型的流形有典范的(伪)体积形式,因为它们有额外的结构保证可选取一个更好的体积形式。在复情形,一个带有全纯体积形式的凯勒流形是卡拉比-丘流形。.

查看 霍奇对偶和体积形式

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

查看 霍奇对偶和微分形式

德拉姆上同调

数学上,德拉姆上同调(de Rham cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。.

查看 霍奇对偶和德拉姆上同调

切空间

切空间(Tangent space)是在某一点所有的切向量组成的线性空间。向量(切向量)存在多种定义。直观的讲,如果所研究的流形(Manifold)是一个三维空间中的曲面,则在每一点的切向量,就是和该曲面相切的向量,切空间就是和该曲面相切的平面。.

查看 霍奇对偶和切空间

内积

#重定向 点积.

查看 霍奇对偶和内积

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

查看 霍奇对偶和内积空间

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

查看 霍奇对偶和紧空间

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

查看 霍奇对偶和线性映射

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

查看 霍奇对偶和行列式

麦克斯韦方程组

#重定向 馬克士威方程組.

查看 霍奇对偶和麦克斯韦方程组

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

查看 霍奇对偶和黎曼流形

霍奇理论

数学上,霍奇理论是光滑流形M的代数拓扑的研究的一个方面。更精确的讲,它寻找M的实系数上同调群在和M上的黎曼度量相关的一般化的拉普拉斯算子的偏微分方程理论中的应用。 它由霍奇于1930年代作为德拉姆上同调的扩展而发展出来,并在三个层次上有重要应用:.

查看 霍奇对偶和霍奇理论

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

查看 霍奇对偶和范数

蘇格蘭

蘇格蘭(英語、低地蘇格蘭語:Scotland,;Alba)是大不列颠及北愛爾蘭聯合王國下屬的構成國之一,位於大不列顛島北部,英格蘭之北,被大西洋環繞包圍,東部濱臨北海,西南濱臨北海海峽和愛爾蘭海,由約790多個島嶼組成。以格子花紋、風笛音樂、畜牧業與威士忌而聞名。雖然外交、軍事、金融、總體經濟政策等事務上受英國國會管轄,但蘇格蘭對於內部的立法、行政上,擁有一定程度的自治,在聯合王國内規模僅次於英格蘭。.

查看 霍奇对偶和蘇格蘭

闵可夫斯基时空

#重定向 閔考斯基時空.

查看 霍奇对偶和闵可夫斯基时空

自同态

在数学中,自同态是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。 在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。 X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含: |- | align.

查看 霍奇对偶和自同态

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

查看 霍奇对偶和Lp空间

杨辉三角形

杨辉三角形,又称賈憲三角形、帕斯卡三角形、海亚姆三角形、巴斯卡三角形,是二项式係數在的一种写法,形似三角形,在中国首现于南宋杨辉的《详解九章算术》得名,书中杨辉说明是引自贾宪的《释锁算术》,故又名贾宪三角形。前 9 行写出来如下:         1        1 1       1 2 1      1 3 3 1     1 4 6 4 1    1 5 10 10 5 1   1 6 15 20 15 6 1  1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 杨辉三角形第 n 层(顶层称第 0 层,第 1 行,第 n 层即第 n+1 行,此处 n 为包含 0 在内的自然数)正好对应于二项式 \left(a+b\right)^ 展开的系数。例如第二层 1 2 1 是幂指数为 2 的二项式 \left(a+b\right)^ 展开形式 a^+2ab+b^ 的系数。.

查看 霍奇对偶和杨辉三角形

梯度

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在這點标量场增长最快的方向(當然要比較的話必須固定方向的長度),梯度的絕對值是長度為1的方向中函數最大的增加率,也就是說 |\nabla f|.

查看 霍奇对偶和梯度

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

查看 霍奇对偶和欧几里得空间

截面 (纤维丛)

在数学之拓扑学领域中,拓扑空间 B 上纤维丛 π: E → B 的一个截面或横截面(section 或 cross section),是一个连续映射 s: B → E,使得对 x 属于 B 有 π(s(x)).

查看 霍奇对偶和截面 (纤维丛)

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

查看 霍奇对偶和旋度

散度

散度或稱發散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。举例来说,考虑空间中的静电场,其空间里的电场强度是一个矢量场。正电荷附近,电场线“向外”发射,所以正电荷处的散度为正值,电荷越大,散度越大。负电荷附近,电场线“向内”,所以负电荷处的散度为负值,电荷越大,散度越小。向量函數的散度為一個純量,而纯量的散度是向量函数。.

查看 霍奇对偶和散度

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 霍奇对偶和数学

拉普拉斯算子

在數學以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator, Laplacian)是由欧几里得空间中的一個函数的梯度的散度给出的微分算子,通常寫成 \Delta 、 \nabla^2 或 \nabla \cdot \nabla 。 這名字是為了紀念法国数学家皮耶-西蒙·拉普拉斯(1749–1827)而命名的。他在研究天体力学在數學中首次应用算子,当它被施加到一个给定的重力位(Gravitational potential)的时候,其中所述算子给出的质量密度的常数倍。經拉普拉斯算子運算為零∆f.

查看 霍奇对偶和拉普拉斯算子

拉普拉斯-贝尔特拉米算子

在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪黎曼流形上,函数的算子。这个更一般的算子叫做拉普拉斯-贝尔特拉米算子(Laplace–Beltrami operator)。与拉普拉斯算子一样,拉普拉斯–贝尔特拉米算子定义为梯度的散度。这个算子作为共变导数的散度,可以延拓到张量上的算子。或者,利用散度与外导数,这个算子可以推广到微分形式上的算子,所得的算子称为拉普拉斯-德拉姆算子(Laplace–de Rham operator)。.

查看 霍奇对偶和拉普拉斯-贝尔特拉米算子

1-形式

在线性代数中,1-形式(one-form)是向量空间上的一種线性泛函。1-形式在这种向量空间语境中的使用方式,通常区别於高阶的多重线性泛函中的1-形式。细节参见线性泛函。 在微分几何中,可微流形上的1-形式是余切丛的一个光滑截面。具体说来,流形 M 上的1-形式是M 的切丛的全空间到 R 的一个光滑映射,限制在每个纤维上是切空间上的线性泛函。用符号表示, 这里 αx 是线性的。 1-形式经常局部地描述,特别是在一个局部坐标中。在一个局部坐标系中,1-形式是坐标的微分的线性组合: 这里 fi 是光滑函数。注意这里使用上指标,不要与幂混淆。从这种观点来看,一个 1-形式从一个坐标系变到另一个时有共变变换法则。从而一个 1-形式是秩 1 共变张量场。.

查看 霍奇对偶和1-形式

2-形式

在线性代数中,2-形式(two-form)是双线性形式的另一种叫法,特别是用于非正式讨论中,或者有时暗示这个双线性形式是斜对称的。 在微分几何中,一个2-形式表示 2 阶微分形式。换句话说,一个 2-形式是一个秩 2 斜对称共变张量场。 对一个给定的向量空间,2-形式的空间由基 1-形式的楔积生成。 参见微分形式。.

查看 霍奇对偶和2-形式

另见

对偶理论

微分形式

微分算子

黎曼几何

亦称为 Hodge 对偶,Hodge对偶,上微分,霍奇对偶性,霍奇星号算子。