目录
53 关系: 力学,力矩,基 (線性代數),垂直,单位向量,反交換律,右手定則,双线性映射,参考系,向量,向量空间,外代数,外積 (消歧義),定向 (向量空間),工程学,中指,三維空間,三重积,平行六面体,平行四边形,度量空间,二元运算,体积,分配律,八元数,光学,四元数与空间旋转,四元數,線性無關,线性关系,点积,电磁学,物理学,萨吕法则,面积,行向量與列向量,行列式,食指,角动量,角度,计算机图形学,计算机科学,范数,零向量,雅可比恒等式,标量,欧几里得空间,法线,洛伦兹力,数学,... 扩展索引 (3 更多) »
- 双线性算子
- 解析几何
力学
力学是物理学的一个分支,主要研究能量和力以及它们与物体的平衡、变形或运动的关系。.
查看 叉积和力学
力矩
在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.
查看 叉积和力矩
基 (線性代數)
在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.
查看 叉积和基 (線性代數)
垂直
垂直是一个几何术语。在平面几何中,如果一条直线与另一条直线相交,且它们构成的任意相邻两个角相等,那么这两条直线相互垂直。术语“垂直”(垂直符號:⊥)衍生一个形容词(垂直)或者名词(垂线)。因此,根据圖一,直线AB通过B点与直线CD相互垂直。像图一这样,如果一条直线与另一条直线垂直,那么它们构成的两个角称为直角,或者90°角。 垂足指两条互相垂直的线相交的点。 垂直的概念对线段和射线也通用,只需看一者所在的直线是否与另一者所在的直线垂直就可以了。如图一中,线段AB和线段CD相互垂直。甚至线段AB的一端不一定要在线段CD上(即可定向伸缩),它们仍被认为是垂直的。 空间几何中,有直线与直线、直线与平面、平面与平面之间的垂直关系。垂直可以看做是欧几里得空间(或内积空间)中的正交关系在二维和三维空间中的特例。.
查看 叉积和垂直
单位向量
数学上,赋范向量空间中的单位向量就是长度为1的向量。单位向量的符号通常有个“帽子”,如:\mathbf。欧几里得空间中,两个单位向量的点积就是它们之间角度的余弦(因为它们的长度都是1)。 一个非零向量\mathbf的正规化向量\mathbf就是平行于\mathbf的单位向量: 这里\|\mathbf\|是\mathbf的范数(长度)。正规化向量有时候也可以当作单位向量的同义词。一组基的元素通常被选为单位向量。在三维直角坐标系中,通常是\mathbf, \mathbf, \mathbf,分别为沿着x, y, z方向的单位向量: 在其他坐标系中,如极坐标系、球坐标系,使用不同的单位向量,符号也会不一样。.
查看 叉积和单位向量
反交換律
令 S 是一个加法群, “*” 是定义在 S 上的二元运算。 如果“*”满足以下条件: 对于任意的 s_1, s_2\in S,有s_1*s_2.
查看 叉积和反交換律
右手定則
右手定則(Right-hand rule)是一個在數學及物理學上使用的定則。是由英國電機工程師約翰·弗萊明(John Fleming)於十九世紀末期發明的定則,用來幫助他的學生轻松地求出移動於磁場的導體所產生的動生電動勢的方向 。 當設定三個相互垂直的向量時,可以有兩種不同的選擇:右手系統或左手系統。因此,假若遇到這類問題時,必需明確地指出是採用哪一種系統。.
查看 叉积和右手定則
双线性映射
在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.
查看 叉积和双线性映射
参考系
参考系(又称参照系、参考坐标),在物理學中指用以測量並記錄位置、定向以及其他物體屬性的坐標系;或指與觀測者的運動狀態相關的觀測參考系;又或同指兩者。.
查看 叉积和参考系
向量
向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.
查看 叉积和向量
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 叉积和向量空间
外代数
外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.
查看 叉积和外代数
外積 (消歧義)
外積(Exterior product)出現在代數、幾何學等領域中。對兩向量\vec與\vec而言,外積可指:.
查看 叉积和外積 (消歧義)
定向 (向量空間)
数学中,实向量空间的一个定向(Orientation)是对哪些有序基是“正”定向以及哪些是“负”定向的一个选取。在三维欧几里得空间中,两个可能的基本定向分别称为右手系与左手系。但是定向的选取与基的手征性是独立的(尽管右手基典型地选为正定向,但它们也可规定为负定向)。.
查看 叉积和定向 (向量空間)
工程学
工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.
查看 叉积和工程学
中指
中指是人類手上的第三隻手指,也是五隻手指中最長的,位於食指與無名指之間。將中指舉起在世界不同地方(最普遍為西方)也有粗口的不文象徵,示意侮辱他人;詳見舉中指。.
查看 叉积和中指
三維空間
三维空间(也称为三度空間、三次元、3D),日常生活中可指由長、宽、高三个维度所構成的空間,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。 Category:立體幾何 S S S.
查看 叉积和三維空間
三重积
三重积,又稱混合積,是三个向量相乘的結果。向量空間中,有两种方法将三个向量相乘,得到三重积,分別稱作标量三重积和向量三重积。.
查看 叉积和三重积
平行六面体
在几何学中,平行六面体是由六个平行四边形所组成的三维立体。它与平行四边形的关系,正如正方体与正方形之间的关系;在欧几里得几何中这四个概念都允许,但在仿射几何中只允许平行四边形和平行六面体。平行六面体的三个等价的定义为:.
查看 叉积和平行六面体
平行四边形
两组对边分别平行的四边形称为平行四边形。平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。 平行四边形并不是梯形。.
查看 叉积和平行四边形
度量空间
在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.
查看 叉积和度量空间
二元运算
二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.
查看 叉积和二元运算
体积
積(Volume)是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。體積是物件佔空間的大小。.
查看 叉积和体积
分配律
在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.
查看 叉积和分配律
八元数
八元数是四元数的一个非结合推广,通常记为O,或\mathbb。 也许是因为八元数不提供一个结合性的乘法,它们比四元数引起较少的注意。尽管如此,八元数仍然与数学中的一些例外结构有关,其中包括例外李群。此外,八元数在诸如弦理论、狭义相对论和量子逻辑中也有应用。.
查看 叉积和八元数
光学
光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.
查看 叉积和光学
四元数与空间旋转
单位四元数(Unit quaternion)可以用于表示三维空间裡的旋转。它与常用的另外两种表示方式(三维正交矩阵和欧拉角)是等价的,但是避免了欧拉角表示法中的万向锁问题。比起三维正交矩阵表示,四元数表示能够更方便地给出旋转的转轴与旋转角。.
查看 叉积和四元数与空间旋转
四元數
四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.
查看 叉积和四元數
線性無關
在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線--性無關或線--性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。.
查看 叉积和線性無關
线性关系
#重定向 線性關係.
查看 叉积和线性关系
点积
在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.
查看 叉积和点积
电磁学
电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.
查看 叉积和电磁学
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
查看 叉积和物理学
萨吕法则
萨吕法则(Sarrus' rule)是計算3×3矩陣行列式的记忆术,得名自法國數學家。 考慮3×3矩陣 其行列式可以用以下方式計算: 將前二直行的數值寫在第三行的右邊,讓矩陣變成一個五行的列矩陣,然後將從左上到右下對角線(圖中的實線部份)數字的乘積和減去將從右上到左下對角線(圖中的虛線部份)數字的乘積和,可以得到: 類似方式也可以計算2×2矩陣的行列式: 萨吕法则是的特例,不適用於4×4或是更大的矩陣。萨吕法则也可以用3×3矩陣的拉普拉斯展开求得。.
查看 叉积和萨吕法则
面积
面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.
查看 叉积和面积
行向量與列向量
在 线性代数中,列向量 / 排矩阵 是一个 m × 1 矩阵,m 為任意正整數,例如: 此外,行向量 / 行矩阵 是一个 1 × m 矩阵,m為任意正整數,例如: 黑体字 \mathbf 用于表示行向量或列向量。 行向量的转置(以T表示)是列向量: 而列向量的转置就是行向量: 集合所有的行矢量的 向量空间 称为行空间。同样地,集合所有列矢量的向量空间称为列空间。行列空间的尺寸等的条目数量的行中的或列的矢量。 列空間可以看作是行空間的雙重空間,因為列向量空間上的任何線性函數都可以唯一地表示為具有特定行向量的內積。.
查看 叉积和行向量與列向量
行列式
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
查看 叉积和行列式
食指
食指,學名為示指(index finger),是第二隻手指,位於拇指與中指之間,長度與环指相若。 在一部分文化中,以食指指人是不禮貌的行為。.
查看 叉积和食指
角动量
在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.
查看 叉积和角动量
角度
#重定向 度 (角).
查看 叉积和角度
计算机图形学
计算机图形学(computer graphics,縮寫为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一個分支領域,主要關注數位合成與操作視覺的圖形內容。雖然這個詞通常被認為是指三維圖形,事實上同時包括了二維圖形以及影像處理。.
查看 叉积和计算机图形学
计算机科学
计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.
查看 叉积和计算机科学
范数
數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.
查看 叉积和范数
零向量
在线性代数及相关数学领域中,零向量(也称退化向量)即欧几里得空间里的中所有元素都为 0 的向量 (0, 0, …, 0)。零向量的表式法於印刷体会打成稍微斜一点的粗黑体數字\mathit 或粗黑體大寫英文字母\boldsymbol,手写的為避免與數字0混淆,因此會在數字0上面加上一个向右的(半)箭头表示这是一个零向量,如:\vec、\overset。 在一般的向量空間中,零向量是唯一確定的向量。它是向量加法的單位元素。 Category:向量 Category:零.
查看 叉积和零向量
雅可比恒等式
雅可比恒等式就是下列等式:.
查看 叉积和雅可比恒等式
标量
--(Scalar),又称--,是只有大小,没有方向,可用實數表示的一個量,實際上純量就是實數,純量這個稱法只是為了區別與向量的差別。标量可以是負數,例如溫度低於冰點。与之相对,向量(又称--)既有大小,又有方向。 在物理学中,标量是在坐标变换下保持不变的物理量。例如,欧几里得空间中两点间的距离在坐标变换下保持不变,相对论四维时空中在坐标变换下保持不变。与此相对的矢量,其分量在不同的坐标系中有不同的值,例如速度。标量可被用作定义向量空间。.
查看 叉积和标量
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
查看 叉积和欧几里得空间
法线
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。 法線是与多边形(polygon)的曲面垂直的理論線,一個平面(plane)存在無限個法向量(normal vector)。在電腦圖學(computer graphics)的領域裡,法線決定著曲面與光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。.
查看 叉积和法线
洛伦兹力
在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.
查看 叉积和洛伦兹力
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 叉积和数学
拇指
拇指,又稱大拇指,是第一隻手指,也是五个指头中最强壮的一个,長度與小指相若。.
查看 叉积和拇指
拉格朗日恒等式
在代数中,以约瑟夫·拉格朗日命名的拉格朗日恒等式是: \begin \biggl(\sum_^n a_k^2\biggr) \biggl(\sum_^n b_k^2\biggr) - \biggl(\sum_^n a_k b_k\biggr)^2 &.
查看 叉积和拉格朗日恒等式
拉普拉斯展开
在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。.
查看 叉积和拉普拉斯展开
另见
双线性算子
解析几何
- 三維球面
- 三維空間
- 中點
- 亥姆霍兹分解
- 代數幾何與解析幾何
- 切线
- 包絡線
- 单位圆
- 叉积
- 双曲线
- 向量
- 圆幂定理
- 圆锥曲线
- 坐標系
- 定向 (向量空間)
- 悬链线
- 拐点
- 斜率
- 旋度
- 曲面
- 格拉姆矩阵
- 欧拉角
- 渐近线
- 点积
- 皮克定理
- 直紋曲面
- 直线
- 笛卡尔坐标系
- 等周定理
- 解析几何
- 離心率
- 鞍點