我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

度量空间

指数 度量空间

在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.

目录

  1. 90 关系: 基 (拓撲學)压缩映射偏序关系偽度量博弈论单位立方体區間同胚同构多面体奧古斯丁·路易·柯西子序列子集字度量字符串实数完备空间對應域巴黎巴拿赫空间三角不等式一致同构一致空间一致连续么半範疇序列度量仿紧空间伦敦开集当且仅当像 (數學)利普希茨連續切比雪夫距离單位元單連通凱萊圖商空间图论Cut-the-Knot秩 (线性代数)稠密集積度量第一可數空間第二可數空間等价关系等距同构範疇 (數學)編輯距離线段... 扩展索引 (40 更多) »

  2. 一致空间
  3. 拓扑空间
  4. 数学分析
  5. 数学结构

基 (拓撲學)

在數學中,帶有拓撲 T 的拓撲空間 X 的基(base 或 basis) B 是 T 中開集的搜集,使得 T 中的所有開集可以被寫為 B 的元素的并集。我們稱基“生成”了拓撲 T。基是有用的因為拓撲的很多性質,可以被簡約為生成該拓撲的基的陳述,并且因為許多拓撲最容易依據生成它們的基來定義。.

查看 度量空间和基 (拓撲學)

压缩映射

度量空间(M,d)上的压缩映射,或压缩,是一个从M到它本身的函数f,存在某个实数0 ,使得对于所有M内的x和y,都有: 满足以上条件的最小的k称为f的利普希茨常数。压缩映射有时称为利普希茨映射。如果以上的条件对于所有的0 都满足,则该映射称为非膨胀的。 更一般地,压缩映射的想法可以定义于两个度量空间之间的映射。如果(M,d)和(N,d')是两个度量空间,则我们寻找常数k,使得d'(f(x),f(y))\leq k\,d(x,y)对于所有M内的x和y。 每一个压缩映射都是利普希茨连续的,因此是一致连续的。 一个压缩映射最多有一个不动点。另外,巴拿赫不动点定理说明,非空的完备度量空间上的每一个压缩映射都有唯一的不动点,且对于M内的任何x,迭代函数序列x,f (x),f (f (x)),f (f (f (x))),……收敛于不动点。这个概念在迭代函数系统中是非常有用的,其中通常要利用压缩映射。巴拿赫不动点定理也用来证明常微分方程的解的存在,以及证明反函数定理。Theodore Shifrin, Multivariable Mathematics, Wiley, 2005, ISBN 0-471-52638-X, pp.

查看 度量空间和压缩映射

偏序关系

偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.

查看 度量空间和偏序关系

偽度量

對於集X中任意元素x,y,若實值函數d: (X,X) \to R符合以下三個條件,稱它為一個偽度量(pseudometric)。.

查看 度量空间和偽度量

博弈论

賽局理論(game theory),又譯為对策论,或者--,经济学的一个分支,1944年馮·諾伊曼與奧斯卡·摩根斯特恩合著《博弈論與經濟行為》,標誌著現代系統博弈理論的的初步形成,因此他被稱為「博弈論之父」。博弈論被認為是20世紀經濟學最偉大的成果之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是運籌學的一个重要学科。.

查看 度量空间和博弈论

单位立方体

单位立方体是边长为 1 的立方体。三维单位立方体的体积是 1,表面积是 6。单位立方体也用来表示多于三维的 n 维空间中的“立方体”,通常表示 n 维坐标系中区间 之间的 n 集合。.

查看 度量空间和单位立方体

區間

在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.

查看 度量空间和區間

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

查看 度量空间和同胚

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

查看 度量空间和同构

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

查看 度量空间和多面体

奧古斯丁·路易·柯西

奧古斯丁·路易·柯西(法语:Augustin Louis Cauchy,,法语发音),法國數學家。.

查看 度量空间和奧古斯丁·路易·柯西

子序列

在数学中,某个序列的子序列是从最初序列通过去除某些元素但不破坏余下元素的相对位置(在前或在后)而形成的新序列。 正式的说,假设 X 是集合而 (ak)k ∈ K 是 X 中的序列,这里的 K.

查看 度量空间和子序列

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

查看 度量空间和子集

字度量

群論中,字度量是在群上的一種度量,就是一個方法去量度群中兩個元素之間的距離。給出群G的生成集S,每個元素都可以用S寫成很多個不同的字。例如設G是所有整數組成的群(\mathbb Z,+),取S.

查看 度量空间和字度量

字符串

字符串(String),是由零个或多个字符组成的有限序列。一般记为s.

查看 度量空间和字符串

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 度量空间和实数

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

查看 度量空间和完备空间

對應域

#重定向 到达域.

查看 度量空间和對應域

巴黎

巴黎(Paris)是法國的首都及最大都市,同時是法蘭西島大區首府,為法國的政治與文化中心,隸屬法蘭西島大區之下的巴黎省(編號第75省;僅轄有1個同名市鎮)。目前的巴黎市轄區範圍大致為舊巴黎城牆內(環城大道內側),依照發展歷史共分成20個區,自從1860年代開始就沒有重大變化。截至2011年為止,巴黎市内人口超過225萬,的人口則逾1,229萬,是歐洲最大的都會區之一。 巴黎在近1,000年的時間内是西方最大的城市,也曾經是世界上最大的城市(16世紀至19世紀期间)。目前是世界上最重要的政治和文化中心之一,在教育、娛樂、時尚、科學、媒體、藝術、金融、政治等方面皆有重大影響力,被認為是世界上最重要的国际大都会之一.

查看 度量空间和巴黎

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

查看 度量空间和巴拿赫空间

三角不等式

三角不等式是數學上的一個不等式,表示從B到A再到C的距離永不少於從B到C的距離;亦可以說是兩項獨立物件的量之和不少於其和的量。它除了適用於三角形之外,還適用於其他數學範疇及日常生活中。.

查看 度量空间和三角不等式

一致同构

在数学领域拓扑学中,一致同构或一致同胚是在一致空间之间关于一致性质的特殊同构。.

查看 度量空间和一致同构

一致空间

在拓扑学這個數學領域裡,一致空间(uniform space)是指带有一致结构的集合。一致空间是一個拓撲空間,有可以用来定义如完备性、一致连续及一致收敛等一致性質的附加结构。 一致结构和拓扑结构之间的概念区别在於,一致空间可以形式化有关于相对邻近性及点间临近性等特定概念。换句话说,「x 邻近于a 胜过y 邻近于b」之類的概念,在一致空间中是有意义的。而相对的,在一般拓扑空间内,给定集合A 和B,有意义的概念只有:点x 能“任意邻近”A(亦即在A 的闭包內);或是和B相比,A 是x 的“較小邻域”,但点间邻近性和相对邻近性就不能只用拓扑结构來描述了。 一致空间广義化了度量空间和拓扑群,因此成為多数数学分析的根基。.

查看 度量空间和一致空间

一致连续

一致连续性描述定义在一定度量空间上的函数的性质。与连续性刻画函数在局部的性质不同,一致连续刻画的是函数的整体性质。一致连续是比连续更苛刻的条件。一个函数在某度量空间上一致连续,则其在此度量空间上必然连续,但反之未必成立。直观上,一致连续可以理解为,当自变量x在足够小的范围内变动时,函数值y的变动也会被限制在足够小的范围内。.

查看 度量空间和一致连续

么半範疇

張量範疇(tensor category),或曰么半範疇(monoidal category), 直覺地講,是個配上張量積的阿貝爾範疇(abelian category),可當作環的範疇化。.

查看 度量空间和么半範疇

序列

数学上,序列是被排成一列的对象(或事件);这样,每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。.

查看 度量空间和序列

度量

度量是指對於一個物體或是事件的某個性質給予一個數字,使其可以和其他物體或是事件的相同性質比較。度量可以是對一物理量(如長度、尺寸或容量等)的估計或測定,也可以是其他較抽象的特質。 度量通常以一標準或度量衡表示。度量以數字單位的標準來表示,如距離即以多少英里或多少公里來表示。度量是大部份自然科學、技術、及其他社會科學中定量研究的基礎。 度量的過程為估計一數量的多寡和相同類型(如長度、時間、重量等)一單位的多寡之間的比例。度量即為此過程的結果,表示為數字加上一個單位,其中實數為估計的比例。如9公尺,其便為物體長度和長度單位,即公尺之間的比例。不像計數和整數個數個物體一般地可精確知道,每一個度量都是個存在些許不確定性的估計。度量量包括了測量尺度(包括量值)、计量单位及不确定性。透過度量可以比較不同的量測,並且減少誤會。有關度量的科學稱為计量学。.

查看 度量空间和度量

仿紧空间

仿紧空间,数学中,仿紧空间是指一类拓扑空间,他们的每个开覆盖都有局部有限的(开)加细(精细化)。这类空间的概念于1944年由Dieudonné引入 。每个紧致空间都是仿紧的。每个仿紧的豪斯多夫空间都是正规的。一个豪斯多夫空间是仿紧的当且仅当其任意开覆盖都可以单位分解。仿紧空间有时也被要求为豪斯多夫的。 仿紧空间的任意闭子空间是仿紧的。豪斯多夫空间的紧子集是闭的,但是对仿紧子集不成立。如果一个空间的任意子空间都是仿紧的,则其称为hereditarily paracompact,这等价于要求其每个开子空间是仿紧的。 任意度量空间是仿紧的。一个拓扑空间是可度量的当且仅当它是仿紧的且是局部可度量的豪斯多夫空间。.

查看 度量空间和仿紧空间

伦敦

伦敦(London;)是英国的首都,也是英國和欧洲最大的城市。位于泰晤士河流域,于公元50年由罗马人建立,取名为伦蒂尼恩,在此后两个世纪内为这一地区最重要的定居点之一。伦敦的历史核心区伦敦城仍旧维持其中世纪的界限,面积,2011年人口为8,072,为全英格兰最小的城市。自19世纪起,“伦敦”一称亦用于指稱围绕这一核心区开发的周围地带。这一城区集合构成大伦敦行政区(与伦敦区覆盖区域相同) ,由伦敦市长及伦敦议会管辖伦敦市长与伦敦市市长非同一概念;后者为伦敦市法团领导者,即伦敦城的管辖者。。 伦敦亦是一个全球城市,名列紐倫港世界三大國際都會之一。在文艺、商业、教育、娱乐、时尚、金融、健康、媒体、专业服务、研究与发展、旅游和交通方面都具有显著的地位,同时还是全球主要金融中心之一,根据计算方式不同,为全球国内生产总值第五或第六大的都市区由于对城市界限的定义、人口的规模、汇率的变化及产出的计算方式不同,城市都市区GDP的排名可能有一定的差别。伦敦和巴黎在总经济产出方面大致规模相近,由此第三方的不同估计对于第五和第六大城市GDP的排列可能不同。麦肯锡全球研究所2012年的报告估计伦敦全市2010年的GDP为US$7,518亿,巴黎则为$7,642亿,由此两市分别为第六和第五。普华永道2009年11月发布的报告称,根据购买力平价计算,2008年伦敦的GDP为US$5,650亿,巴黎则为US$5,640亿,分别为第五和第六。麦肯锡的研究中伦敦人口为1,490万,巴黎则为1,180万,而普华永道的研究中伦敦人口为859万,巴黎992万。伦敦亦是全球文化首都之一,还是全球国际访客数量最多的城市,根据客流量计算则拥有全球最为繁忙的城市机场系统。伦敦拥有43所大学,其高等教育机构密集度在全欧洲最高。2012年,伦敦成为史上首座三次举办现代夏季奥林匹克运动会的城市。 伦敦的人口和文化十分多样,在大伦敦地区内使用的语言就超过300种。这一区域2015年的官方统计人口为8,673,713,为欧盟中最大城市,人口占全英国的12.5%。伦敦的城市区为欧盟第二大,根据2011年普查其人口达到9,787,426,仅次于巴黎。其都市区为欧洲最大,人口达13,614,409,而大伦敦政府则称伦敦都市区的总人口为2,100万。1831年至1925年间,伦敦为世界最大的城市。 有四项世界遗产位于伦敦,分别为:伦敦塔;邱园;威斯敏斯特宫、威斯敏斯特教堂和圣玛格丽特教堂;以及格林尼治历史区(其中的皇家天文台为本初子午线、0°经线和格林尼治标准时间所经之地)。其他著名景点包括白金汉宫、伦敦眼、皮卡迪利圆环、圣保罗座堂、伦敦塔桥、特拉法加广场和碎片大厦。伦敦亦是诸多博物馆、画廊、图书馆、体育运动及其他文化机构的所在地,包括大英博物馆、国家美术馆、泰特现代艺术馆、大英图书馆以及40家西区剧院。伦敦地铁是全球最古老的地下铁路网络。.

查看 度量空间和伦敦

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

查看 度量空间和开集

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 度量空间和当且仅当

像 (數學)

在数学中,像是一個跟函数相關的用語。.

查看 度量空间和像 (數學)

利普希茨連續

在數學中,特別是實分析,利普希茨連續(Lipschitz continuity)以德國數學家魯道夫·利普希茨命名,是一個比通常連續更強的光滑性條件。直覺上,利普希茨連續函數限制了函數改變的速度,符合利普希茨條件的函數的斜率,必小於一個稱為利普希茨常數的實數(該常數依函數而定)。 在微分方程,利普希茨連續是皮卡-林德洛夫定理中確保了初值問題存在唯一解的核心條件。一種特殊的利普希茨連續,稱為壓縮應用於巴拿赫不動點定理。 利普希茨連續可以定義在度量空間上以及賦范向量空間上;利普希茨連續的一種推廣稱為赫爾德連續。.

查看 度量空间和利普希茨連續

切比雪夫距离

數學上,切比雪夫距离(Chebyshev distance)或是L∞度量是向量空間中的一種度量,二個點之間的距離定義為其各座標數值差的最大值。以(x1,y1)和(x2,y2)二點為例,其切比雪夫距离為max(|x2-x1|,|y2-y1|)。切比雪夫距离得名自俄羅斯數學家切比雪夫。 若將國際象棋棋盤放在二維直角座標系中,格子的邊長定義為1,座標的x軸及y軸和棋盤方格平行,原點恰落在某一格的中心點,則王從一個位置走到其他位置需要的步數恰為二個位置的切比雪夫距离,因此切比雪夫距离也稱為棋盤距離。例如位置F6和位置E2的切比雪夫距离為4。任何一個不在棋盤邊緣的位置,和周圍八個位置的切比雪夫距离都是1。.

查看 度量空间和切比雪夫距离

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

查看 度量空间和單位元

單連通

在拓撲學中,單連通是拓撲空間的一種性質。直觀地說,單連通空間中所有閉曲線都能連續地收縮至一點。此性質可以由空間的基本群刻劃。.

查看 度量空间和單連通

凱萊圖

在數學中,凱萊圖也叫做凱萊著色圖是編碼離散群的圖。它的定義是凱萊定理(以阿瑟·凱萊命名)所暗含的,并使用這個群的特定的通常有限的生成元集合。它是組合群論與幾何群論的中心工具。.

查看 度量空间和凱萊圖

商空间

在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。.

查看 度量空间和商空间

图论

图论(Graph theory)是组合数学的一个分支,和其他数学分支,如群论、矩阵论、拓扑学有着密切关系。图是图论的主要研究对象。图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。 图论起源于著名的柯尼斯堡七桥问题。该问题于1736年被欧拉解决,因此普遍认为欧拉是图论的创始人。 图论的研究对象相当于一维的单纯复形。.

查看 度量空间和图论

Cut-the-Knot

Cut-the-knot是由Alexander Bogomolny维护的一个教育网站,专注于通俗地介绍各类数学话题。该网站已经获得20多个来自科学和教育出版方面的奖项,,包括科学美国人“网站奖”(2003年),大不列颠百科全书“互联网向导奖”(Internet Guide Award),和科学“网络观察奖”(NetWatch award)。它的名字源于亚历山大大帝解戈尔迪的结(Gordian knot)的传说。 Cut-the-knot宣称"Judging Mathematics by its pragmatic value is like judging symphonia by the weight of its score",将该网站描述为"a resource that would help learn, if not math itself, then, at least, ways to appreciate its beauty." 该网站为老师、学生和家长以及为了教育、鼓励兴趣、刺激好奇心任何对数学感兴趣的人设计。许多数学理念做成了applet程序演示。.

查看 度量空间和Cut-the-Knot

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

查看 度量空间和秩 (线性代数)

稠密集

在拓扑学及数学的其它相关领域,给定拓扑空间X及其子集A,如果对于X中任一点x,x的任一邻域同A的交集不为空,则A称为在X中稠密。直观上,如果X中的任一点x可以被A中的点很好的逼近,则称A在X中稠密。 等价地说,A在X中稠密当且仅当X中唯一包含A的闭集是X自己。或者说,A的闭包是X,又或者A的补集的内部是空集。.

查看 度量空间和稠密集

積度量

在數學裡,積度量(product metric)是在兩個以上度量空間之笛卡爾積內的度量。n 個度量空間之笛卡爾積的積度量,可視為是將 n 個子空間的範數作為 n 維向量之各分量,取其 p-範數所得之值。.

查看 度量空间和積度量

第一可數空間

在拓撲學上,第一可數空間(First-countable space)是指有可數的邻域基的拓撲空間,即對於x \in X,存在x的開鄰域序列U_1,U_2,U_3,...

查看 度量空间和第一可數空間

第二可數空間

二可數空間是指有一個可數基的拓撲空間,我们也将“具备可數基”这一性质当作一条公理(第二可数性公理)放在第二可數空間的定义中(与“有限交,任意并”一同)。.

查看 度量空间和第二可數空間

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

查看 度量空间和等价关系

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

查看 度量空间和等距同构

範疇 (數學)

在範疇論中,範疇此一概念代表著一堆數學實體和存在於這些實體間的關係。對範疇的研究允許其公式化抽象結構及保有結構的數學運算等概念。實際上,範疇在現代數學的每個分支之中都會出現,而且是統合這些領域的核心概念。有關範疇自身的研究被稱做是範疇論。.

查看 度量空间和範疇 (數學)

編輯距離

編輯距離是針對二個字符串(例如英文字)的差異程度的量化量測,量測方式是看至少需要多少次的處理才能將一個字符串變成另一個字符串。編輯距離可以用在自然语言处理中,例如拼寫檢查可以根據一個拼錯的字和其他正確的字的編輯距離,判斷哪一個(或哪幾個)是比較可能的字。DNA也可以視為用A、C、G和T組成的字符串,因此編輯距離也用在生物信息学中,判斷二個DNA的類似程度。Unix 下的 diff 及 patch 即是利用编辑距离来进行文本编辑对比的例子。 編輯距離有幾種不同的定義,差異在可以對字符串進行的處理。.

查看 度量空间和編輯距離

线段

在數學上,線段是直線上两点间的一段,这两个点称为端点。參見區間。 當終點均在圓周上,該線段稱為弦。當它們都是多邊形的頂點,若它們是毗鄰的頂點該線段為邊,否則就是對角線。 在生活應用上,主要有三種——連結、隔開、刪.

查看 度量空间和线段

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

查看 度量空间和绝对值

直径

在数学尤其是几何学中,直径是圆形的特性之一,是指穿过圆心且其兩端點皆在圓周上的线段或者該線段的長度是最長的,一般用符号d或著Ø表示。 在一般的度量空间(也就是定义了距离的空间,比如说常见的二维平面)上,也可以定义一个集合的直径。在这里直径是这个集合之中两点之间的距离的最小上界:.

查看 度量空间和直径

直线

線,是一個點在平面或空間沿著一定方向和其相反方向運動的軌跡;不彎曲的線。直線是幾何學的基本概念,在不同的幾何學體系中有著不同的描述。在這裡主要描述歐幾里得空間中的直線。其他曲率非零狀況下的直線,請參考非歐幾里得幾何。 歐幾里得幾何研究曲率為零的空間下狀況,它並未對點、直線、平面、空間給出定義,而是通過公理來描述點線面的關係。 歐幾里得幾何中的直線可以看作是一個點的集合,這個集合中的任意一點都在這個集合中的其他任意兩點所確定的直綫上。 “過兩點有且只有一條直線”是歐幾里得幾何體系中的一條公理,“有且只有”意即“確定”,即兩點確定一直線。 在幾何學中,直線沒有粗細、沒有端點、沒有方向性、具有無限的長度、具有確定的位置。.

查看 度量空间和直线

莫里斯·弗雷歇

莫里斯·弗雷歇(Maurice Fréchet) (1878年9月2日 – 1973年6月4日)是法国数学家。.

查看 度量空间和莫里斯·弗雷歇

萊文斯坦距離

莱文斯坦距离,又称Levenshtein距离,是编辑距离的一种。指两个字串之間,由一个转成另一个所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,刪除一个字符。 例如將kitten一字轉成sitting:.

查看 度量空间和萊文斯坦距離

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 度量空间和补集

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

查看 度量空间和豪斯多夫空间

豪斯多夫距离

豪斯多夫距离量度度量空间中紧子集之间的距离。.

查看 度量空间和豪斯多夫距离

賦範向量空間

在数学中,赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里得空间 Rn 的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:.

查看 度量空间和賦範向量空間

距离

距離是對兩個物體或位置間相距多遠的數值描述,是個不具方向性的純量,且不為負值。 在物理或日常使用中,距離可以是個物理長度,或某個估算值,指人、動物、交通工具或光線之類的媒介由起點至終點所經過的路徑長。 在數學裡,距離是個稱之為度量的函數,為物理距離這個概念之推廣。度量是個函數,依據一組特定的規則作用,且有具體的方法可用來描述一些空間內的元素互相「接近」或「遠離」。除了歐氏空間內常見的距離定義外,在圖論與統計學等數學領域裡,亦存在其他的「距離」概念。在大多數的情形下,「從 A 至 B 的距離」與「從 B 至 A 的距離」的意義是相同的。.

查看 度量空间和距离

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

查看 度量空间和黎曼流形

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

查看 度量空间和连续函数

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

查看 度量空间和连通空间

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

查看 度量空间和范数

郵政局

郵政局是郵政系統中的基本設施。.

查看 度量空间和郵政局

闭包

闭包可以指:.

查看 度量空间和闭包

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

查看 度量空间和闭集

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

查看 度量空间和邻域

集合

集合可以指:.

查看 度量空间和集合

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

查看 度量空间和速度

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

查看 度量空间和Lp空间

柯西序列

在数学中,一个柯西列或柯西数列是指这样一个数列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正数。柯西列是以数学家奥古斯丁·路易·柯西的名字命名的。 柯西列的定义依赖于距离的定义,所以只有在度量空间中柯西列才有意义。在更一般的一致空间中,可以定义更为抽象的柯西滤子和柯西网。 一个重要性质是,在完备空间中,所有的柯西数列都有极限且极限在这空间里,这就让人们可以在不求出这个极限(如果存在)的情况下,利用柯西列的判别法则证明该数列的极限是存在的。柯西列在构造具有完备性的代数结构的过程中也有重要价值,如构造实数。.

查看 度量空间和柯西序列

林德勒夫空間

 空間是每個開覆盖都有可數子覆蓋的拓撲空間。注意緊空間的定義為每個開覆蓋都有有限子覆蓋,故林德勒夫空間可視為緊空間的推廣。.

查看 度量空间和林德勒夫空間

極限 (數列)

極限,即為一個數列\,使得\lim_a_n.

查看 度量空间和極限 (數列)

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

查看 度量空间和欧几里得空间

欧几里得距离

在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。.

查看 度量空间和欧几里得距离

歐洲數學學會

歐洲數學學會(European Mathematical Society)在1990年創於波蘭,旨在:.

查看 度量空间和歐洲數學學會

正规空间

在拓扑学和相关的数学分支中,正规空间(Normal space)、T4 空间、T5 空间和 T6 空间是特别优秀的一类拓扑空间。这些条件是分离公理的个例。.

查看 度量空间和正规空间

满射

满射或蓋射(surjection、onto),或稱满射函数或映成函數,一个函数f:X\rightarrow Y为满射,則对于任意的陪域 Y 中的元素 y,在函数的定义域 X 中存在一點 x 使得 f(x).

查看 度量空间和满射

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 度量空间和有理数

有界函数

定义在集合X上的函数称为有界的,如果它所有的值所组成的集合是有界的。也就是说,存在一个数M>0,使得对于X中的所有x,都有 有时,如果对于X中的所有x,都有f(x)\le A,则函数称为上有界的,A就是它的上界。另一方面,如果对于X中的所有x,都有f(x)\ge B,则函数称为下有界的,B就是它的下界。 一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列f.

查看 度量空间和有界函数

有界集合

在数学分析和有关的数学领域中,一个集合被称为有界的,如果它在某種意义上有有限大小。反过来说,不是有界的集合就叫做无界。.

查看 度量空间和有界集合

最大下界

在数学中,某个集合 X 的子集 E 的下确界(infimum 或 infima,记为 inf E)是小于或等于的 E 所有其他元素的最大元素,其不一定在 E 內。所以还常用术语最大下界(简写为 glb 或 GLB)。在数学分析中,实数的下确界是非常重要的常见特殊情况。但這個定义,在更加抽象的序理论的任意偏序集合中,仍是有效的。 下确界是上确界概念的对偶。.

查看 度量空间和最大下界

擬等距同構

擬等距同構是數學上度量空間之間的等價關係,著重在度量空間上的粗結構,而忽略掉小尺寸上的細節。這樣有如從遠處觀看度量空間,看到其大概,而察看不出細處的分別。.

查看 度量空间和擬等距同構

擴展實數線

擴展實數線由實數線\R加上+\infty和-\infty得到(注意+\infty和-\infty并不是实数),写作\overline\R或\left。扩展的實數線在研究数学分析,特别是积分时非常有用。.

查看 度量空间和擴展實數線

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 度量空间和数学

拓撲比較

在拓撲學和其相關的數學領域裡,拓撲比較是指在同一個給定的集合上的兩個拓撲結構之間的關係。在一給定的集合上的所有拓撲會形成一個偏序集合。此一序關係可以用來做不同拓撲之間的比較。.

查看 度量空间和拓撲比較

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

查看 度量空间和拓扑空间

曲线

曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。 曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。.

查看 度量空间和曲线

曼哈頓距離

計程車幾何(Taxicab geometry)或曼哈頓距離(Manhattan distance or Manhattan length)或方格線距離是由十九世紀的赫尔曼·闵可夫斯基所創辭彙,為歐幾里得幾何度量空間的幾何學之用語,用以標明兩個點上在標準坐標系上的絕對軸距之總和。.

查看 度量空间和曼哈頓距離

另见

一致空间

拓扑空间

数学分析

数学结构

亦称为 有界度量空间。

绝对值直径直线莫里斯·弗雷歇萊文斯坦距離补集豪斯多夫空间豪斯多夫距离賦範向量空間距离黎曼流形连续函数连通空间范数郵政局闭包闭集邻域集合速度Lp空间柯西序列林德勒夫空間極限 (數列)欧几里得空间欧几里得距离歐洲數學學會正规空间满射有理数有界函数有界集合最大下界擬等距同構擴展實數線数学拓撲比較拓扑空间曲线曼哈頓距離