之间利普希茨連續和度量空间相似
利普希茨連續和度量空间有(在联盟百科)5共同点: 压缩映射,區間,一致连续,连续函数,数学。
压缩映射
度量空间(M,d)上的压缩映射,或压缩,是一个从M到它本身的函数f,存在某个实数0 ,使得对于所有M内的x和y,都有: 满足以上条件的最小的k称为f的利普希茨常数。压缩映射有时称为利普希茨映射。如果以上的条件对于所有的0 都满足,则该映射称为非膨胀的。 更一般地,压缩映射的想法可以定义于两个度量空间之间的映射。如果(M,d)和(N,d')是两个度量空间,则我们寻找常数k,使得d'(f(x),f(y))\leq k\,d(x,y)对于所有M内的x和y。 每一个压缩映射都是利普希茨连续的,因此是一致连续的。 一个压缩映射最多有一个不动点。另外,巴拿赫不动点定理说明,非空的完备度量空间上的每一个压缩映射都有唯一的不动点,且对于M内的任何x,迭代函数序列x,f (x),f (f (x)),f (f (f (x))),……收敛于不动点。这个概念在迭代函数系统中是非常有用的,其中通常要利用压缩映射。巴拿赫不动点定理也用来证明常微分方程的解的存在,以及证明反函数定理。Theodore Shifrin, Multivariable Mathematics, Wiley, 2005, ISBN 0-471-52638-X, pp.
利普希茨連續和压缩映射 · 压缩映射和度量空间 ·
區間
在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.
一致连续
一致连续性描述定义在一定度量空间上的函数的性质。与连续性刻画函数在局部的性质不同,一致连续刻画的是函数的整体性质。一致连续是比连续更苛刻的条件。一个函数在某度量空间上一致连续,则其在此度量空间上必然连续,但反之未必成立。直观上,一致连续可以理解为,当自变量x在足够小的范围内变动时,函数值y的变动也会被限制在足够小的范围内。.
一致连续和利普希茨連續 · 一致连续和度量空间 ·
连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.
利普希茨連續和连续函数 · 度量空间和连续函数 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么利普希茨連續和度量空间的共同点。
- 什么是利普希茨連續和度量空间之间的相似性
利普希茨連續和度量空间之间的比较
利普希茨連續有11个关系,而度量空间有90个。由于它们的共同之处5,杰卡德指数为4.95% = 5 / (11 + 90)。
参考
本文介绍利普希茨連續和度量空间之间的关系。要访问该信息提取每篇文章,请访问: