之间叉积和范数相似
叉积和范数有(在联盟百科)5共同点: 向量,向量空间,行向量與列向量,零向量,欧几里得空间。
向量
向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
行向量與列向量
在 线性代数中,列向量 / 排矩阵 是一个 m × 1 矩阵,m 為任意正整數,例如: 此外,行向量 / 行矩阵 是一个 1 × m 矩阵,m為任意正整數,例如: 黑体字 \mathbf 用于表示行向量或列向量。 行向量的转置(以T表示)是列向量: 而列向量的转置就是行向量: 集合所有的行矢量的 向量空间 称为行空间。同样地,集合所有列矢量的向量空间称为列空间。行列空间的尺寸等的条目数量的行中的或列的矢量。 列空間可以看作是行空間的雙重空間,因為列向量空間上的任何線性函數都可以唯一地表示為具有特定行向量的內積。.
叉积和行向量與列向量 · 范数和行向量與列向量 ·
零向量
在线性代数及相关数学领域中,零向量(也称退化向量)即欧几里得空间里的中所有元素都为 0 的向量 (0, 0, …, 0)。零向量的表式法於印刷体会打成稍微斜一点的粗黑体數字\mathit 或粗黑體大寫英文字母\boldsymbol,手写的為避免與數字0混淆,因此會在數字0上面加上一个向右的(半)箭头表示这是一个零向量,如:\vec、\overset。 在一般的向量空間中,零向量是唯一確定的向量。它是向量加法的單位元素。 Category:向量 Category:零.
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
上面的列表回答下列问题
- 什么叉积和范数的共同点。
- 什么是叉积和范数之间的相似性
叉积和范数之间的比较
叉积有53个关系,而范数有27个。由于它们的共同之处5,杰卡德指数为6.25% = 5 / (53 + 27)。
参考
本文介绍叉积和范数之间的关系。要访问该信息提取每篇文章,请访问: