我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

叉积和角动量

快捷方式: 差异相似杰卡德相似系数参考

叉积和角动量之间的区别

叉积 vs. 角动量

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。. 在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

之间叉积和角动量相似

叉积和角动量有(在联盟百科)2共同点: 力矩物理学

力矩

在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.

力矩和叉积 · 力矩和角动量 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

叉积和物理学 · 物理学和角动量 · 查看更多 »

上面的列表回答下列问题

叉积和角动量之间的比较

叉积有53个关系,而角动量有21个。由于它们的共同之处2,杰卡德指数为2.70% = 2 / (53 + 21)。

参考

本文介绍叉积和角动量之间的关系。要访问该信息提取每篇文章,请访问: