我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

位形空间

指数 位形空间

经典力学中,位形空间(或译组态空间)是一个物理系统可能处于的所有可能状态的空间,可以有外部约束。一个典型系统的位形空间具有流形的结构;因此,它也称为位形流形。 例如,运动在普通欧几里得空间中的单个粒子的位形空间就是R3。对于N个粒子的系统,组态空间就是R3N,或者说它的没有两个位置重叠的子空间。更一般地,可以将在一个流形M中运动的N个粒子的系统的位形空间看作函数空间 MN。 要同时考虑位置和动量,就必须转到位形空间的余切丛中。这个更大的空间称为系统的相空间。简单说来,一个位形空间通常是一个相空间(参看拉格朗日分布)从函数空间构造的“一半”。 在量子力学中,路径积分表述强调了位形的历史。 位形空间也和辫理论相关,因为一条弦不穿过本身的条件可以表述为将函数空间的对角线切除。.

目录

  1. 8 关系: 余切丛函数空间经典力学物理系统相空間量子力学欧几里得空间流形

余切丛

微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密顿函数;这样余切丛可以理解为哈密顿力学讨论的相空间。.

查看 位形空间和余切丛

函数空间

在数学中,函数空间是从集合X到集合Y的给定种类的函数的集合。它叫做空间是因为在很多应用中,它是拓扑空间或向量空间或这二者。.

查看 位形空间和函数空间

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

查看 位形空间和经典力学

物理系统

物理系统(简称系统)描述了进行物理学研究时所选取的研究对象,系统之外的物理对象则称为环境。物理学研究中,除了环境对于物理系统的影响之外,不研究环境本身。 系统与环境由研究者选定。选取系统时往往使得分析过程变得简单。例如,一根链条、半根链条或链条中的一节都可被选取为一个物理系统。孤立系统是指与环境之间的联系可以忽略的物理系统。 在量子相干性的研究中,“系统”可以指一个物体的微观性质,而对应的“环境”可以是内部自由度。.

查看 位形空间和物理系统

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

查看 位形空间和相空間

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 位形空间和量子力学

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

查看 位形空间和欧几里得空间

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

查看 位形空间和流形