我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

同餘

指数 同餘

数学上,同余(congruence modulo,符號:≡)是數論中的一種等價關係。當两个整数除以同一个正整数,若得相同-zh-hans:余数; zh-hant:餘數;-,则二整数同余。同餘是抽象代數中的同餘關係的原型。最先引用同余的概念与「≡」符号者为德國数学家高斯。.

目录

  1. 82 关系: AKS質數測試基本单位 (数论)原根可作图多边形可分多项式同餘關係同态合同 (數學)多项式环多项式码子群对称 (数学)对称关系射影平面局部有限群带余除法中国剩余定理希尔密码希尔伯特数幅角交换环亨泽尔引理二補數二次互反律二次剩余互質因子算法代数余角余数復活節計算表冊循環冗餘校驗循環群初等數論凱撒密碼商环关系 (数学)因數四平方和定理倒数离散对数秦九韶秀爾演算法等号等价关系等价类算术研究米迪定理维吉尼亚密码群论... 扩展索引 (32 更多) »

AKS質數測試

AKS質數測試(又被稱為 Agrawal–Kayal–Saxena質數測試 和 Cyclotomic AKS test)是一個決定型質數測試演算法 ,由三個來自的計算機科學家,、和,在2002年8月6日發表於一篇題為質數屬於P的論文。Manindra Agrawal, Neeraj Kayal, Nitin Saxena, "", Annals of Mathematics 160 (2004), no.

查看 同餘和AKS質數測試

基本单位 (数论)

在代数数论,基本单位,是数域中代数整数环的生成元(即模单位根),可理解为单位群模其扭子群是个无限循环群。狄利克雷单位定理表明:rank.

查看 同餘和基本单位 (数论)

原根

在数论,特别是整除理论中,原根是一个很重要的概念。 對於两个正整数(a,m).

查看 同餘和原根

可作图多边形

在数学中,可作图多边形是可以用尺规作图的方式作出的正多边形。例如,正五边形可以只使用圆规和直尺作出,而正七边形却不可以。.

查看 同餘和可作图多边形

可分多项式

数学中,可分多项式在不同的作者的书下有两个略微不同的定义。 最常见的一个定义是:当在一个给定域K上的多项式P(X)在K的代数闭包中有不同的根时,称多项式为可分的。换言之它的互异根的数量需要等于多项式的次数。在多项式因式分解的观点下,这样的多项式是无平方多项式。 第二个定义,当P(X)在K中的每个不可约因子在K的代数闭包中的根互不相同,此时称P(X)是可分的。这意味着每个不可约因子是无平方项的。在这个定义中,可分性依赖于K,比如任何一个不可分的不可约多项式P在它的分裂域上都变成可分的了。并且在这个定义下,每个完美域上的多项式是可分的,这包含了0特征域和所有有限域。 两个定义对于K上不可约多项式是等价的,这个被用来定义域K的可分扩张。 在条目的余下部分我们只用第一个定义。 一个多项式可分当且仅当它与它的形式导数P'(X)互素。.

查看 同餘和可分多项式

同餘關係

在数学特别是抽象代数中,同餘关系或简称同餘是相容于某个代数运算的等价关系。.

查看 同餘和同餘關係

同态

抽象代数中,同态是两个代数结构(例如群、环、或者向量空间)之间的保持结构不变的映射。英文的同态(homomorphism)来自希腊语:ὁμός (homos)表示"相同"而μορφή (morphe)表示"形态"。注意相似的词根ὅμοιος (homoios)表示"相似"出现在另一个数学概念同胚的英文(homeomorphism)中。.

查看 同餘和同态

合同 (數學)

在數學中,合同(英文:congruence,符號:≅)做為一個一般性的概念,指的是一組物件之間的等價關係。例如:.

查看 同餘和合同 (數學)

多项式环

在抽象代數中,多項式環推廣了初等數學中的多項式。一個環 R 上的多項式環是由係數在 R 中的多項式構成的環,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R 為交換環時,多項式環可以被刻劃為交換 R-代數範疇中的自由對象。.

查看 同餘和多项式环

多项式码

在编码理论中,多项式码(polynomial code)是有效集合是由多項式(通常是固定长度的多项式)可以被特定多项式(长度较短,称为生成多项式)整除的一种。.

查看 同餘和多项式码

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

查看 同餘和子群

对称 (数学)

对称不只出現在幾何學中,也在數學領域的其他分支中出現,对称其實就是不變量,是指某特性不隨而變化。 若一個物件可以藉由另一個物件的不變轉換來得到,二個物件藉由不變轉換有互相对称關係,這是一種等价关系。 在中,函數的輸出值不隨輸入變數的排列而改變,這些排列形成一個群,也就是對稱群。在欧几里得几何中的等距同构中,也有使用「對稱群」一詞,更廣泛的用法是自同构群。.

查看 同餘和对称 (数学)

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

查看 同餘和对称关系

射影平面

在數學裡,投影平面(projective plane)是一個延伸平面概念的幾何結構。在普通的歐氏平面裡,兩條線通常會相交於一點,但有些線(即平行線)不會相交。投影平面可被認為是個具有額外的「無窮遠點」之一般平面,平行線會於該點相交。因此,在投影平面上的兩條線會相交於一個且僅一個點。 文藝復興時期的藝術家在發展透視投影的技術中,為此一數學課題奠定了基礎。投影平面的典型範例為實投影平面,亦稱為「擴展歐氏平面」。此一範例在代數幾何、拓撲學及投影幾何內都很重要,在各領域內的形式均略有不同,可標計為 、RP2 或 P2(R) 等符號。還有許多其他的投影平面,包括無限(如複投影平面)與有限(如法諾平面)之類型。 投影平面是二維投影空間,但並不是所有投影平面都可以嵌入三維投影空間內。投影平面是否能嵌入三維投影空間取決於該平面是否為笛沙格平面。.

查看 同餘和射影平面

局部有限群

在數學的群論中,局部有限群是群的一種,研究方法與有限群相似。局部有限群的西羅子群、、阿貝爾子群等都有被研究。.

查看 同餘和局部有限群

带余除法

带余除法(也称为欧几里德除法)是数学中的一种基本算术计算方式。给定一个被除数和一个除数,带余除法给出一个整数和一个介于一定范围的余数,使得下面等式成立: 一般限定余数的范围在0与之间,也有限定在与之间。这样的限定都是为了使得满足等式的有且仅有一个。这时候的称为带余除法的商。带余除法一般表示为: 表达为:“除以等于,余”。最常见的带余除法是整数与整数的带余除法(被除数和除数都是整数),但实数与整数乃至实数与实数的带余除法也有应用。对一般的抽象代数系统,能够进行带余除法的都是具有欧几里德性质的系统。如果余数为零,则称整除。一般约定除数不能为0.

查看 同餘和带余除法

中国剩余定理

中國剩--定理,又稱中國餘數定理,是数论中的一個关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则以及求解方法。也称为孫子定理,古有「韓信點兵」、「孫子定理」、「求一术」(宋沈括)、「鬼谷算」(宋周密)、「隔墻算」(宋 周密)、「剪管術」(宋杨辉)、「秦王暗點兵」、「物不知數」之名。.

查看 同餘和中国剩余定理

希尔密码

希爾密碼是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。 每個字母當作26進制數字:A.

查看 同餘和希尔密码

希尔伯特数

在數論中,希尔伯特数(Hilbert number)是指滿足4n + 1的正整數,希尔伯特数是因數學家大卫·希尔伯特而得名。希尔伯特数形成的整數數列為1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, … 。 希尔伯特質数是指一個無法被1以外較小的希尔伯特数整除的整數,希尔伯特質数形成的整數數列為5, 9, 13, 17, 21, 29, 33, 37, 41, 49,...

查看 同餘和希尔伯特数

幅角

数学中,复數的辐角是指复数在复平面上对应的向量和正向实数轴所成的有向角。复数的辐角值可以是一切实数,但由于相差360^\circ(即弧度2 \pi)的辐角在实际应用中没有差别,所以定义复数的辐角主值为辐角模360^\circ(2 \pi)后的余数,定义取值范围在0^\circ到360^\circ(2 \pi)之间。复数的辐角是复数的重要性质,在不少理论中都有重要作用。.

查看 同餘和幅角

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

查看 同餘和交换环

亨泽尔引理

亨泽尔引理是数学中模算术的一個结论。亨泽尔引理说明,如果一个模(是给定的质数)的多项式方程有一个单根,则可以通过这个根求出该方程在模的更高次方时的根。在完备交换环(包括p进数)中,亨泽尔引理被看作是类似于牛顿法的渐进求根方法。由于p进数分析在某些方面比实分析更加简单,亨泽尔引理可以加强为多项式方程有根的判定方法。.

查看 同餘和亨泽尔引理

二補數

二補數(2's complement)是一種用二進位表示有號數的方法,也是一種將數字的正負號變號的方式,常在電腦科學中使用。 一個數字的二補數就是將該數字作位元反相運算(即一補數),再將結果加1。在二補數系統中,一個負數就是用其對應正數的二補數來表示。 二補數系統的最大優點是可以在加法或減法處理中,不需因為數字的正負而使用不同的計算方式。只要一種加法電路就可以處理各種有號數加法,而且減法可以用一個數加上另一個數的二補數來表示,因此只要有加法電路及二補數電路即可完成各種有號數加法及減法,在電路設計上相當方便。 另外,二補數系統的0就只有一個表示方式,這點和一補數系統不同(在一補數系統中,0有二種表示方式),因此在判斷數字是否為0時,只要比較一次即可。 右側的表是一些8-bit二補數系統的整數。它的可表示的範圍包括-128到127,總共256(.

查看 同餘和二補數

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art.

查看 同餘和二次互反律

二次剩余

在数论中,特别在同余理论裏,一个整数X对另一个整数p的二次剩餘(Quadratic residue)指X的平方X^2除以p得到的余数。 當存在某個X,式子X^2 \equiv d \pmod成立時,稱「d是模p的二次剩餘」 當对任意X,X^2 \equiv d \pmod不成立時,稱「d是模p的二次非剩餘」 研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。.

查看 同餘和二次剩余

互質因子算法

互質因子算法(Prime-factor FFT algorithm, PFA),又稱為Good-Thomas算法 ,是一種快速傅立葉變換(FFT),把N.

查看 同餘和互質因子算法

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

查看 同餘和代数

余角

如果两个角的和是直角(也就是90°),那么称这两个角互为余角(complementary angles),简称「互余」,也可以说其中一个角是另一个角的余角。用数学语言来表示就是:.

查看 同餘和余角

余数

在算术中,当两个整数相除的结果不能以整数商表示时,余数便是其“餘留下的量”。当余数为零时,被称为整除。.

查看 同餘和余数

復活節計算表冊

定復活節日期在中世紀早期稱為computus(拉丁文中的計算)。其規則是復活節的日期是在3月21日當日或之後的滿月日後的首個星期日。天主教教会設計了方法去定一個「天主教的月」,而不像猶太人般觀察真正的月亮。.

查看 同餘和復活節計算表冊

循環冗餘校驗

循環冗餘校驗(Cyclic redundancy check,通稱「CRC」)是一種根據網路數據封包或電腦檔案等數據產生簡短固定位數驗證碼的一種散列函數,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的電腦硬件使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。此方法是由於1961年發表 。.

查看 同餘和循環冗餘校驗

循環群

在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.

查看 同餘和循環群

初等數論

初等數論意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國餘數定理、費馬小定理、二次互反律等等。.

查看 同餘和初等數論

凱撒密碼

在密码学中,恺撒密码(Caesar cipher),或稱恺撒加密、恺撒变换、变换加密,是一种最简单且最广为人知的加密技术。它是一种替换加密的技术,明文中的所有字母都在字母表上向後(或向前)按照一个固定数目进行偏移後被替换成密文。例如,当偏移量是3的时候,所有的字母A将被替换成D,B变成E,以此类推。这个加密方法是以羅馬共和時期恺撒的名字命名的,当年恺撒曾用此方法与其将军们进行联系。 恺撒密码通常被作为其他更复杂的加密方法中的一个步骤,例如维吉尼亚密码。恺撒密码还在现代的ROT13系统中被应用。但是和所有的利用字母表进行替换的加密技术一样,恺撒密码非常容易被破解,而且在实际应用中也无法保证通信安全。.

查看 同餘和凱撒密碼

商环

在環論中,商環(或稱剩餘類環)是環對一個理想的商結構。.

查看 同餘和商环

关系 (数学)

在數學上,關係是對如等於.

查看 同餘和关系 (数学)

≡可以指:.

查看 同餘和≡

因數

因數是一個常見的數學名詞,又名「--」。.

查看 同餘和因數

四平方和定理

四平方和定理 (Lagrange's four-square theorem) 說明每个正整数均可表示为4个整数的平方和。它是費馬多邊形數定理和華林問題的特例。 注意有些整數不可表示為3個整數的平方和,例如7。.

查看 同餘和四平方和定理

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

查看 同餘和倒数

离散对数

在整數中,離散對數(Discrete logarithm)是一種基於同餘運算和原根的一種對數運算。而在實數中對數的定義 logb a 是指對於給定的 a 和 b,有一個數 x,使得。相同地在任何群 G中可為所有整數 k定義一個冪數為 bk,而離散對數 logb a是指使得 的整數 k。 離散對數在一些特殊情況下可以快速計算。然而,通常沒有具非常效率的方法來計算它們。公鑰密碼學中幾個重要算法的基礎,是假設尋找離散對數的問題解,在仔細選擇過的群中,並不存在有效率的求解算法。.

查看 同餘和离散对数

秦九韶

九韶(),字道古,中国南宋数学家。著作有《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理的历史解法)和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。.

查看 同餘和秦九韶

秀爾演算法

演算法(Shor算法),以數學家彼得·秀爾命名,是一個在1994年發現的,針對整數分解這題目的的量子演算法(在量子計算機上面運作的演算法)。比較不正式的說,它解決題目如下:給定一個整數N,找出他的質因數。 在一個量子計算機上面,要分解整數N,秀爾演算法的運作需要多項式時間(時間是log N的某個多項式這麼長,log N在這裡的意義是輸入的檔案長度)。更精確的說,這個演算法花費的時間,展示出質因數分解問題可以使用量子計算機以多項式時間解出,因此在複雜度類BQP裡面。這比起傳統已知最快的因數分解演算法,普通數域篩選法,其花費次指數時間 -- 大約,還要快了一個指數的差異。 秀爾演算法非常重要,因為它代表使用量子計算機的話,我們可以用來破解已被廣泛使用的公開密鑰加密方法,也就是RSA加密演算法。RSA演算法的基礎在於假設了我們不能很有效率的分解一個已知的整數。就目前所知,這假設對傳統的(也就是非量子)電腦為真;沒有已知傳統的演算法可以在多項式時間內解決這個問題。然而,秀爾演算法展示了因數分解這問題在量子計算機上可以很有效率的解決,所以一個足夠大的量子計算機可以破解RSA。這對於建立量子計算機和研究新的量子計算機演算法,是一個非常大的動力。 在2001年,IBM的一個小組展示了秀爾演算法的實例,使用NMR實驗的量子計算機,以及7個量子位元,將15分解成3×5。.

查看 同餘和秀爾演算法

等号

等号表示相等关系的符号,读作“等于”,是在西元1557年由Robert Recorde發明的。在數學等式中,等號被放置在具有相同值的兩個(或更多個)表達式之間。在 Unicode 和 ASCII 中,它是。.

查看 同餘和等号

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

查看 同餘和等价关系

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

查看 同餘和等价类

算术研究

《算术研究》(Disquisitiones Arithmeticae)是德国数学家卡尔·弗里德里希·高斯於1798年写成的一本数论教材,在1801年他24岁时首次出版。全书用拉丁文写成。在这本书中高斯整理汇集了费马、欧拉、拉格朗日和勒让德等数学家在数论方面的研究结果,并加入了许多他自己的重要成果。.

查看 同餘和算术研究

米迪定理

米迪定理說明如果将\frac化为b进制小数(其中p为质数,a是小于p的正整数),且小数的循环节长度是偶数有些质数的循环节长度是奇数,如3、31。,则有以下性质:.

查看 同餘和米迪定理

维吉尼亚密码

维吉尼亚密码(又译维热纳尔密码)是使用一系列凯撒密码组成密码字母表的加密算法,属于多表密码的一种简单形式。 维吉尼亚密码曾多次被发明。该方法最早记录在吉奥万·巴蒂斯塔·贝拉索( Giovan Battista Bellaso)于1553年所著的书《吉奥万·巴蒂斯塔·贝拉索先生的密码》(意大利语:La cifra del.)中。然而,后来在19世纪时被误传为是法国外交官布莱斯·德·维吉尼亚(Blaise De Vigenère)所创造,因此现在被称为“维吉尼亚密码”。 维吉尼亚密码以其简单易用而著称,同时初学者通常难以破解,因而又被称为“不可破译的密码”(法语:le chiffre indéchiffrable)。这也让很多人使用维吉尼亚密码来加密的目的就是为了将其破解。.

查看 同餘和维吉尼亚密码

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

查看 同餘和群论

狄利克雷定理

在數論中,狄利克雷定理說明對於任意互質的正整數a,d,有無限多個質數的形式如a+nd,其中n為正整數,即在算術級數a+d,a+2d,a+3d,...

查看 同餘和狄利克雷定理

階 (群論)

在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.

查看 同餘和階 (群論)

解析几何

解析几何(Analytic geometry),又稱為坐标几何(Coordinate geometry)或卡氏幾何(Cartesian geometry),早先被叫作笛卡兒几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。 在中学课本中,解析几何被简单地解释为:采用数值的方法来定义几何形状,并从中提取数值的信息。然而,这种数值的输出可能是一个方程或者是一种几何形状。 1637年,笛卡兒在《方法论》的附录“几何”中提出了解析几何的基本方法。 以哲学观点写成的这部法语著作为后来牛顿和莱布尼茨各自提出微积分学提供了基础。 对代数几何学者来说,解析几何也指(实或者複)流形,或者更广义地通过一些複變數(或實變數)的解析函数为零而定义的解析空间理论。这一理论非常接近代数几何,特别是通过让-皮埃尔·塞尔在《代数几何和解析几何》领域的工作。这是一个比代数几何更大的领域,不过也可以使用类似的方法。.

查看 同餘和解析几何

高斯引理

在数论中,高斯引理给出了一个整数是模另一个整数的二次剩余的条件。尽管高斯引理没有实际计算上的意义,但作为二次互反律的证明中的一环,高斯引理有着理论上的重要性。 高斯引理最早出现在高斯1808年发表的二次互反律的第三个证明中,并在第五个证明中再次用到。.

查看 同餘和高斯引理

记数系统

记数系统,或称记数法或数制(numeral system、system of numeration),是使用一组數字符号来表示數的体系。 一个理想的记数系统能够:.

查看 同餘和记数系统

费马小定理

费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么a^p - a 是p的倍数,可以表示为 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加常用。(符号的应用请参见同餘。).

查看 同餘和费马小定理

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

查看 同餘和輾轉相除法

迪菲-赫爾曼密鑰交換

迪菲-赫爾曼密鑰交換(Diffie–Hellman key exchange,縮寫為D-H) 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公鑰交換的概念最早由瑞夫·墨克(Ralph C.

查看 同餘和迪菲-赫爾曼密鑰交換

蔡勒公式

蔡勒公式(Zeller's congruence),是一種計算任何一日屬一星期中哪一日的演算法,由德國數學家推算出來。.

查看 同餘和蔡勒公式

雅各布森根

在抽象代数之分支环理论中,一个环 R 的雅各布森根(Jacobson radical)是 R 的一个理想,包含在某种意义上“与零接近”的那些元素。.

查看 同餘和雅各布森根

除法

数学中,尤其是在基本计算裏,除法可以看成是「乘法的反运算」,也可以理解为「重复的减法」。除法运算的本质就是「把参与运算的除数变为1,得出被除数的值」。 例如:6 \div 3.

查看 同餘和除法

MOD

MOD可以指:.

查看 同餘和MOD

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

查看 同餘和P進數

SYN cookie 是一种用于阻止 SYN flood 攻击的技术。这项技术的主要发明人 Daniel J. Bernstein 将 SYN cookies 定义为“TCP 服务器进行的对开始TCP数据包序列数字的特定选择”。举例来说,SYN Cookies 的应用允许服务器当 SYN 队列被填满时避免丢弃连接。相反,服务器会表现得像 SYN 队列扩大了一样。服务器会返回适当的 SYN+ACK 响应,但会丢弃 SYN 队列条目。如果服务器接收到客户端随后的ACK响应,服务器能够使用编码在 TCP 序号内的信息重构 SYN 队列条目。.

查看 同餘和SYN cookie

Up to

在数学领域,詞組“up to xxx”表示为了某种目的同一等价类中的元素视为一体。“xxxx”描述了某种性质或将中元素变为同一等价类中另一个的操作(即将元素和它变为的那个等价)。例如在群论中,我们有一个群 G 作用在集合 X 上,在此情形:如果 X 中两个元素在同一轨道中,我们可以说它们等价“up to 群作用”。 中文中没有类似对应的词组,翻譯成中文時,可以酌情譯為:在“xxx 的意义下”或“差一个 xxx”等。比如上面可以翻译为“差一个群作用的意义下等价”。但是,這個翻譯是既迂迴又笨拙,因為數學中「在xxx的意義下」通常是對有數個不等價定義的詞語指定其意義,對應英文“in the sense of”,例如「這個函數在勒貝格的意義下可積,但是在黎曼的意義下不可積」,就對「可積」一詞先後指定兩個不等價的定義;然而,數學中英文短語“up to”的重點不在確定某詞語的定義,而在省略掉一些非本質的次要差異。.

查看 同餘和Up to

模 (消歧义)

模,可以指.

查看 同餘和模 (消歧义)

模反元素

模反元素也称为模倒数,或者模逆元。 一整数a對同餘n之模反元素是指滿足以下公式的整數 b 也可以寫成以下的式子 整数 a 對模数 n 之模反元素存在的充分必要條件是 a 和 n 互質,若此模反元素存在,在模数 n 下的除法可以用和對應模反元素的乘法來達成,此概念和實數除法的概念相同。.

查看 同餘和模反元素

模除

模除(又稱模数、取模運算等)是一种不具交换性的二元运算。.

查看 同餘和模除

欧拉定理 (数论)

在数论中,欧拉定理(也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a-zh-hans:互素; zh-hant: 互質-(即\gcd(a,n).

查看 同餘和欧拉定理 (数论)

欧拉函数

在數論中,對正整數n,歐拉函數\varphi(n)是小於或等於n的正整數中與n互質的數的數目。此函數以其首名研究者歐拉命名,它又稱為φ函數(由高斯所命名)或是歐拉總計函數(totient function,由西爾維斯特所命名)。 例如\varphi(8).

查看 同餘和欧拉函数

歐拉定理

歐拉定理可以指:.

查看 同餘和歐拉定理

星期的計算

星期的計算是以數學方法計算出某一指定日期是在一周中的哪一天。多種數學算法可計算出過去或未來某一指定日期,是屬於一周中的星期幾,包括(Doomsday Rule),Babwani公式等,但其實這些算法皆基于类似的机制相互变化而来,只是透過不同規則取得相同結果。 算法的典型應用,是計算某人的出生日期或某重大事件的發生日期,是在一周中的哪一天。.

查看 同餘和星期的計算

映射度

在拓扑学中,两个同维数流形之间的连续映射的度数(degree)非正式地说是一个点被盖住的次数。一个映射的度数可用同调群,或(对光滑映射)正则值的原像定义。它是卷绕数的一个推广。例如,考虑复平面上映射 zn,视为 ''S''2 到自身的映射,具有度数 n,它将球面绕自身缠了 n 圈。 在物理学中,连续映射的度数,比如从空间到有序参数集的一个映射,是拓扑量子数的一个例子。.

查看 同餘和映射度

斜線

斜線(/ slash,又稱斜線號、斜杠或前斜線,用作标点符号及不同用途。為分辨後斜線(\ 又稱倒斜線或反斜線),斜線又稱為前斜線。.

查看 同餘和斜線

散列板

散列板在密碼學中是一種將字母式明文替換至純數字的工具。其同時實現分餾和資料壓縮。它也是單-雙體密碼。VIC密碼主要依靠散列板來進行加密。 散列板是一個類似以下的表格: 散列板的第一行提入數字0-9,但亦可胡亂排列,以加強安全性。第二行通常會寫入高頻字母,並同時留下兩個空白位置,同時,其沒有行編號。最後一行即填入剩餘字母,同時於最左方加上兩個數字行編號。 就如第一行的數字一樣,表格中央的英文字母亦可胡亂排列或加入關鍵字作起行,而上方表格的數字和字母則是按順序排列。由於此排列方法會多出四個空格,此時,通常會在第一行跳過兩格,下方兩個則以「/」和「‧」來用作轉義字符。只要發送者和接收者皆使用同一散列板,排序便不成問題。 加密時,第一行的字母只需轉換成上方數字。而第二和第三行會轉換至一個十位數,先取行編號,再取列者。常用字母只會映射一個數字,由此減短密文長度,同時亦降低左方兩個數字暴露的機率。以下是一個例子: 轉換後的結果為「3113212731223655」。如果表格本身排列並非順序排列,就可直接釋放信息;若非,則可以進入第二階段再加密,如再置換或替換。以下的例子會利用同餘加密一次: 之後,我們便可以使用相同的散列板將密文轉換回去: 解密的方法就是將以上動作逆向做一次僅僅是這些過程的反向。雖然明文的數量可以不同,但以上方的表格可見,但凡第一階段解密後發現2或6,即可將其確定為第二或第三行字母。 使用到散列板的加密法包括VIC密碼及SECOM密碼。.

查看 同餘和散列板

整除规则

整除是数学中两个自然数之间的一种关系。自然数a可以被自然数b整除,是指b是a的因數,且a是b的整数倍数,也就是a除以b没有餘数。下面列出了十进制中判断一个整数除以另外一个整数的商为整数,且余数为零的一些规则。.

查看 同餘和整除规则

整数模n乘法群

在同余理论中,模 n 的互质同余类组成一个乘法群,称为整数模 n 乘法群,也称为模 n 既约剩余类。在环理论中,一个抽象代数的分支,也称这个群为整数模 n 的环的单位群(单位是指乘法可逆元)。 这个群是数论的基石,在密码学、整数分解和-zh-hans: 素性测试; zh-hant: 質數測試-均有运用。例如,关于这个群的阶(即群的“大小”),我们可以确定如果 n 是质数当且仅当阶数为 n-1。.

查看 同餘和整数模n乘法群

數位訊號處理器

數位信號處理器(digital signal processor,DSP)是一種專用於(通常為實時的)數位信號處理的微處理器。.

查看 同餘和數位訊號處理器

數論主題列表

這是數論的主題列表。參照.

查看 同餘和數論主題列表

數根

在數學中,數根(又稱位數根或數字根Digital root)是自然數的一種性質,換句話說,每個自然數都有一個數根。 數根是將一正整數的各個位數相加(即橫向相加),若加完後的值大於10的話,則繼續將各位數進行橫向相加直到其值小於十為止,或是,將一數字重複做數字和,直到其值小於十為止,則所得的值為該數的數根。 例如54817的數根為7,因為5+4+8+1+7.

查看 同餘和數根

替换式密码

替換式密碼,又名取代加密法,是密碼學中按規律將文字加密的一種方式。替換式密碼中可以用不同字母數為一單元,例如每一個或兩個字母為一單元,然後再作加密。密文接收者解密時需用原加密方式解碼才可取得原文本。由於拼音文字中字的組成為有限的字母,以英語為例只有26個字母,組成可能的單元數較少,因此使用替換式密碼相對較為容易,而且亦可使用簡單機械進行加密;相反,非拼音文字如中文則因單元數非常大難以使用一般加密方式,必需建立密碼本,然後逐字替換。更何況某些非拼音文字中字字皆由不同大小的字根來組字,較難轉換,因此使用替換式密碼的示例比較少。 當以替換式密碼與(或稱轉位式密碼或移轉式密碼)相比較時,可以發現轉位式密碼只是改變明文中單元的位置,而單元本身沒有轉變;相反,替換式密碼只是轉換單元,但密文中單元的位置沒有改變。 替換式密碼亦有許多不同類型。如果每一個字母為一單元(或稱元素)進行加密操作,就可以稱之為“簡易替換密碼”(simple substitution cipher)或“單表加密”(monoalphabetic cipher),另又稱為單字母替換加密;以數個字母為一單元則稱為“多表加密”(polyalphabetic cipher)或“表格式加密”(polygraphic)。單表加密只可在一個單元中使用同一種替換加密,而多表加密則可在一個單元使用不同的加密方式,明文單元映射到密文上可以有好幾種可能性,反之亦然。.

查看 同餘和替换式密码

0.999…

在數學的完备实数系中,循环小数0.999…,也可写成0.\overline、0.\dot或0.(9),表示一个等於1的实数,即「0.999…」所表示的数与「1」相同。目前該等式已经有各式各样的證明式;它们各有不同的嚴謹性、背景假设,且都蕴含实数的实质条件,即阿基米德公理、历史文脉、以及目标受众。 这类展开式的非唯一性不仅限於十进制系统,相同的现象也出现在其它的整数进位制中,数学家们也列举出了一些1在非整数进位制中的写法,这种现象也不是仅仅限於1的:对於每一个非零的有限小数,都存在另一种含有无穷多个9的写法,由於简便的原因,我们几乎肯定使用有限小數的写法,这样就更加使人们误以为没有其它写法了,实际上,一旦我们允许使用无限小数,那么在所有的进位制中都有无穷多种替代的写法,例如,18.3287与18.3286999…、18.3287000…,以及许多其它的写法,都表示相同的数,这些各种各样的等式被用来更好地理解分數的小数展开式的规律,以及一个简单-zh:分形; zh-hans:分形; zh-hant:碎形-图形──康托尔集合的结构,它们也出现在一个对整个实数的无穷集合的--研究之中。 在过去數十年裡,許多数学教育的研究人员研究了大眾及学生们对该等式的接受程度,许多学生在學習开始時怀疑或拒絕该等式,而後許多学生被老師、教科书和如下章節的算術推論說服接受两者是相等的,儘管如此,許多人們仍常感到懷疑,而提出进一步的辯解,這經常是由於存在不少對數學实数錯誤的觀念等的背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一个实数都有唯一的一个小数展开式,以及認為無限小(无穷小)不等於0,並且將0.999…视为一个不定值,即該值只是一直不斷無限的微微擴張變大,因此与1的差永遠是無限小而不是零,因此「永遠都差一點」。我们可以构造出符合這些直觀的數系,但是只能在用於初等数学或多數更高等數學中的标准实数系统之外进行,的確,某些設計含有「恰恰小於1」的数,不過,这些数一般与0.999…无关(因为与之相关的理论上和实践上都皆無實質用途),但在数学分析中引起了相当大的關注。.

查看 同餘和0.999…

亦称为 模算术。

狄利克雷定理階 (群論)解析几何高斯引理记数系统费马小定理輾轉相除法迪菲-赫爾曼密鑰交換蔡勒公式雅各布森根除法MODP進數SYN cookieUp to模 (消歧义)模反元素模除欧拉定理 (数论)欧拉函数歐拉定理星期的計算映射度斜線散列板整除规则整数模n乘法群數位訊號處理器數論主題列表數根替换式密码0.999…