徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

對稱矩陣

指数 對稱矩陣

在線性代數中,對稱矩陣是一個方形矩陣,其轉置矩陣和自身相等。 對稱矩陣中的右上至左下方向元素以主對角線(左上至右下)為軸進行對稱。若將其寫作A.

30 关系: 协方差矩阵反對稱矩陣可对角化矩阵实数對角矩陣主對角線希尔伯特矩阵乘法交換律二次型循环矩阵圆锥曲线內積线性代数特征 (代数)特征向量特征值和特征向量非奇异方阵谱定理黑塞矩阵转置矩阵若尔当标准形极分解正定矩阵正交正交矩阵汉克尔矩阵泰勒公式方块矩阵

协方差矩阵

在统计学与概率论中,共變異數矩阵(也称离差矩阵、方差-协方差矩阵)是一个矩阵,其 i, j 位置的元素是第 i 个与第 j 个(即随机变量构成的向量)之间的共變異數。这是从标量随机变量到高维度随机向量的自然推广。.

新!!: 對稱矩陣和协方差矩阵 · 查看更多 »

反對稱矩陣

在線性代數中,反對稱矩陣(或稱斜對稱矩陣)是一個方形矩陣,其轉置矩陣和自身的加法逆元相等。其滿足: 或寫作A.

新!!: 對稱矩陣和反對稱矩陣 · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 對稱矩陣和可对角化矩阵 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 對稱矩陣和实数 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

新!!: 對稱矩陣和對角矩陣 · 查看更多 »

主對角線

在線性代數中,一個方块矩阵的主對角線是一條由左上角至右下角的對角線。例如,以下矩陣中,為1的元素就位在主對角線上: 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end 如果一个矩阵的主對角線以外的元素全為0,這樣的矩陣就稱作對角矩陣。而主對角線元素的和,即為矩陣的跡數。 另一種對角線則稱作反對角線、反向對角線或次對角線。 反向對角線即为从右上角到左下角的对角线。 Z.

新!!: 對稱矩陣和主對角線 · 查看更多 »

希尔伯特矩阵

在线性代数中,希尔伯特矩阵是一种系数都是單位分數的方块矩阵。具体来说一个希尔伯特矩阵H的第i横行第j纵列的系数是: 举例来说,5 \times 5的希尔伯特矩阵就是: 1 & \frac & \frac & \frac & \frac \\ \frac & \frac & \frac & \frac & \frac \\ \frac & \frac & \frac & \frac & \frac \\ \frac & \frac & \frac & \frac & \frac \\ \frac & \frac & \frac & \frac & \frac \end.

新!!: 對稱矩陣和希尔伯特矩阵 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

新!!: 對稱矩陣和乘法 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 對稱矩陣和交換律 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 對稱矩陣和二次型 · 查看更多 »

循环矩阵

在线性代数中,循环矩阵是一种特殊形式的 Toeplitz矩阵,它的行向量的每个元素都是前一个行向量各元素依次右移一个位置得到的结果。由于可以用离散傅立叶变换快速解循环矩阵,所以在数值分析中有重要的应用。.

新!!: 對稱矩陣和循环矩阵 · 查看更多 »

圆锥曲线

圆锥曲线(英語:conic section),又稱圓錐截痕、圓錐截面、二次平面曲线,是数学、幾何學中通过平切圆锥(嚴格為一个正圆锥面和一个平面完整相切)得到的曲线,包括圆,椭圆,抛物线,双曲线及一些退化类型。 圆锥曲线在約公元前200年時就已被命名和研究了,其發現者為古希臘的數學家阿波羅尼奥斯,那时阿波羅尼阿斯对它们的性质已做了系统性的研究。 圆锥曲线应用最广泛的定义为(椭圆,抛物线,双曲线的统一定义):动点到一定点(焦点)的距离与其到一定直线(准线)的距离之比为常数(離心率e)的点的集合是圆锥曲线。对于0 1得到双曲线。.

新!!: 對稱矩陣和圆锥曲线 · 查看更多 »

內積

#重定向 点积.

新!!: 對稱矩陣和內積 · 查看更多 »

秩可以指:.

新!!: 對稱矩陣和秩 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 對稱矩陣和线性代数 · 查看更多 »

特征 (代数)

在数学中,环R的特征被定义为最小的正整数n使得 这里的na被定义为 如果不存在这样的n,R的特征被定义为0。R的特征经常指示为char(R)。 环R的特征可以等价的定义为唯一的自然数n使得nZ是映射1到1R的从Z到R的唯一的环同态的核。另一个等价的定义:R的特征是唯一的自然数n使得R包含同构于商环Z/nZ的子环。.

新!!: 對稱矩陣和特征 (代数) · 查看更多 »

特征向量

#重定向 特征值和特征向量.

新!!: 對稱矩陣和特征向量 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 對稱矩陣和特征值和特征向量 · 查看更多 »

非奇异方阵

若方块矩阵A\,满足条件\left|A\right|(\rm(A))\ne0,则称A\,为非奇异方阵,否则称为奇异方阵。.

新!!: 對稱矩陣和非奇异方阵 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

新!!: 對稱矩陣和谱定理 · 查看更多 »

黑塞矩阵

#重定向 海森矩阵.

新!!: 對稱矩陣和黑塞矩阵 · 查看更多 »

转置矩阵

在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.

新!!: 對稱矩陣和转置矩阵 · 查看更多 »

若尔当标准形

#重定向 若尔当标准型.

新!!: 對稱矩陣和若尔当标准形 · 查看更多 »

极分解

在数学中,特别是线性代数和泛函分析裡,一个矩阵或线性算子的极分解是一种类似于复数之极坐标分解的分解方法。一个复数 z 可以用它的模长和辐角表示为: 其中 r 是 z 的模长(因此是一个正实数),而 \theta 则为 z 的辐角。.

新!!: 對稱矩陣和极分解 · 查看更多 »

正定矩阵

在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.

新!!: 對稱矩陣和正定矩阵 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

新!!: 對稱矩陣和正交 · 查看更多 »

正交矩阵

在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

新!!: 對稱矩陣和正交矩阵 · 查看更多 »

汉克尔矩阵

汉克尔矩阵(Hankel Matrix),线性代数中是指每一条副对角线上的元素都相等的方阵,由德國數學家赫尔曼·汉克尔推導命名。漢克爾矩陣的行列式稱為。 H_n.

新!!: 對稱矩陣和汉克尔矩阵 · 查看更多 »

泰勒公式

在数学中,泰勒公式(Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。.

新!!: 對稱矩陣和泰勒公式 · 查看更多 »

方块矩阵

方塊矩陣,或简称方阵,是行數及列數皆相同的矩陣。由n \times n\,矩陣組成的集合,連同矩陣加法和矩陣乘法,构成環。除了n.

新!!: 對稱矩陣和方块矩阵 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »