徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

傅里叶变换

指数 傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

82 关系: 卷积卷积定理单位阶跃函数声学多項式复数奇函數與偶函數实数导数密码学小波分析工程学不确定性原理世界图书出版公司帕塞瓦尔定理三角形函数平方可積函數幺正算符弧度微分信号处理快速傅里叶变换分數傅立葉變換切比雪夫多项式周期函数傅立叶变换家族中的关系傅里叶分析傅里叶级数函數極限共轭复数光学勒貝格積分矩形函数离散傅里叶变换离散时间傅里叶变换积分积分变换符号函数算子紧空间约瑟夫·傅里叶统计学绝对收敛组合数学物理学特征函数 (概率论)狄拉克δ函数相位頻域頻率...频谱餘弦角频率計算複雜性理論高斯函数贝塞尔函数麦格劳-希尔集团龐特里亞金對偶性连续傅里叶变换阿贝尔群赫兹量子力学自然對數自然数金融週期週期性虚数Prentice HallPrinceton University PressSinc函数概率论欧拉公式正交变换正弦法国振幅海洋学数字信号处理数论数据科学拉普拉斯变换 扩展索引 (32 更多) »

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 傅里叶变换和卷积 · 查看更多 »

卷积定理

卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积对应于另一个域中的乘积,例如时域中的卷积对应于频域中的乘积。 其中\mathcal(f)表示f 的傅里叶变换。下面这种形式也成立: 借由傅里叶逆变换\mathcal^,也可以写成 注意以上的写法只对特定形式定义的变换正确,变换可能由其它方式正规化,使得上面的关系式中出现其它的常数因子。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n-1组对位乘法,其计算复杂度为\mathcal(n^2);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为\mathcal(n\log n)。这一结果可以在快速乘法计算中得到应用。.

新!!: 傅里叶变换和卷积定理 · 查看更多 »

单位阶跃函数

單位階躍函數,又称赫维赛德阶跃函数,定義如下: 另一种定义为: 或 它是個不連續函數,其「微分」是狄拉克δ函數。它是一個幾乎必然是零的隨機變數的累積分布函數。 事實上,x.

新!!: 傅里叶变换和单位阶跃函数 · 查看更多 »

声学

声学是研究媒质中机械波(包括声波、超声波和次声波)的科学,研究范围包括声波的产生,接收,转换和声波的各种效应。同时声学测量技术是一种重要的测量技术,有着广泛的应用。.

新!!: 傅里叶变换和声学 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 傅里叶变换和多項式 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 傅里叶变换和复数 · 查看更多 »

奇函數與偶函數

在數學裡,偶函數和奇函數是滿足著相對於加法逆元之特定對稱關係的函數。這在數學分析的許多領域中都很重要,特別是在冪級數和傅立葉級數的理論裡。其命名是因為冪函數的冪的奇偶性滿足下列條件:若n為一偶數,則函數xn是偶函數,若n為一奇數,則為奇函數。.

新!!: 傅里叶变换和奇函數與偶函數 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 傅里叶变换和实数 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 傅里叶变换和导数 · 查看更多 »

密码学

密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.

新!!: 傅里叶变换和密码学 · 查看更多 »

小波分析

小波分析(wavelet analysis)或小波轉換(wavelet transform)是指用有限長或快速衰減的、稱為「母小波」(mother wavelet)的振盪波形來表示信號。該波形被縮放和平移以匹配輸入的信號。 「小波」(wavelet)一詞由Morlet和Grossman在1980年代早期提出。他們用的是法語詞ondelette,意思就是「小波」。後來在英語裡,「onde」被改為「wave」而成了wavelet。 小波變換分成兩個大類:離散小波變換(DWT) 和連續小波轉換(CWT)。兩者的主要區別在於,連續變換在所有可能的縮放和平移上操作,而離散變換採用所有縮放和平移值的特定子集。 小波理論和幾個其他課題相關。所有小波變換可以視為時域頻域表示的形式,所以和調和分析相關。所有實際有用的「離散小波變換」使用包含有限脈衝響應濾波器的濾波器段(filter band)。構成CWT的小波受海森堡的測不準原理制約,或者說,離散小波基可以在測不準原理的其他形式的情境中考慮。.

新!!: 傅里叶变换和小波分析 · 查看更多 »

工程学

工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.

新!!: 傅里叶变换和工程学 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 傅里叶变换和不确定性原理 · 查看更多 »

世界图书出版公司

世界图书出版公司(简称:世图公司)为中华人民共和国一家国有出版社,是中宣部直属的中国出版集团公司的成员单位。 公司成立于1986年,总部设立于北京,因而名义上旗下的世界图书出版公司北京公司也称“世图本部”。世界图书出版公司的其他子公司还包括:世界图书出版上海有限公司、世界图书出版广东有限公司、世界图书出版西安有限公司、世界图书出版长春有限公司、世图音像电子出版社、中国科学文化音像出版社。 公司主要向海外出版机构购买版权,重印、加注中文或者翻译出版图书及音像制品,同时也出版中国作者创作的社科类作品。.

新!!: 傅里叶变换和世界图书出版公司 · 查看更多 »

帕塞瓦尔定理

在数学中,帕塞瓦尔定理(或称帕塞瓦尔等式),经常指“傅里叶转换是幺正算符”这一结论;简而言之,就是说函数平方的和(或积分)等于其傅里叶转换式平方之和(或者积分)。这个定理产生于Marc-Antoine Parseval在1799年所得到的一个有关级数的定理,该定理随后被应用于傅里叶级数。它也被称为瑞利能量定理或瑞利恒等式,以物理学家约翰·斯特拉特,第三代瑞利男爵命名。 虽说帕塞瓦尔定理这一术语常用来描述任何傅里叶转换的幺正性,尤其是在物理学和工程学上,但这种属性最一般的形式还是称为Plancherel theorem而不是帕塞瓦尔定理才更合适。 。.

新!!: 傅里叶变换和帕塞瓦尔定理 · 查看更多 »

三角形函数

三角形函数定义为: \begin 1 - |t|; & |t| 或者定义为两个相同的单位矩形函数的卷积: 在信号处理以及通信系统工程领域三角形函数是一个非常有用的理想信号表示,也是用于导出其它理想信号的原型信号。在脉冲编码调制中作为数字信号传输的脉冲波形以及信号接收时作为匹配滤波器使用。另外,它也等同于叫作Bartlett window的三角形窗。 三角形函数的傅里叶变换, |\frac\int_^\infty \textrm(t)e^ \, dt |.

新!!: 傅里叶变换和三角形函数 · 查看更多 »

平方可積函數

在数学中,平方可积函数(square-integrable function)是绝对值平方的积分为有限值的实值或复值可测函数。因此,若 则我们说 f 在实直线 (-\infty,+\infty) 上是平方可积的。平方可积一词也可以用于有限区间如。 一个等价的定义是,函数本身的平方(而非它的绝对值)是勒贝格可积的。要想使其为真,实部的正和负的部分的积分都必须是有限的,虚部也是如此。 通常这个术语不是指某个特定函数,而是指几乎处处相等的一组函数。.

新!!: 傅里叶变换和平方可積函數 · 查看更多 »

幺正算符

在泛函分析中,幺正算符是定义在希尔伯特空间上的有界线性算符U: H → H,满足如下规律 其中 U∗ 是 U的厄米转置, 而 I: H → H是恒等算符。 幺正算符具有如下性质.

新!!: 傅里叶变换和幺正算符 · 查看更多 »

弧度

弧度又稱弳度,是平面角的單位,也是國際單位制導出單位。單位弧度定義為圓弧長度等於半徑時的圓心角。角度以弧度給出時,通常不寫弧度單位,或有時記為rad(㎭)。平面角和立體角皆無因次。 一個完整的圓的弧度是2π,所以2π rad.

新!!: 傅里叶变换和弧度 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 傅里叶变换和微分 · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

新!!: 傅里叶变换和信号处理 · 查看更多 »

快速傅里叶变换

快速傅里叶变换(Fast Fourier Transform, FFT),是快速计算序列的离散傅里叶变换(DFT)或其逆变换的方法。傅里叶分析将信号从原始域(通常是时间或空间)转换到頻域的表示或者逆过来转换。FFT会通过把DFT矩阵分解为稀疏(大多为零)因子之积来快速计算此类变换。 因此,它能够将计算DFT的复杂度从只用DFT定义计算需要的 O(n^2),降低到 O(n \log n),其中 n 为数据大小。 快速傅里叶变换广泛的应用于工程、科学和数学领域。这里的基本思想在1965年才得到普及,但早在1805年就已推导出来。 1994年美國數學家把FFT描述为“我们一生中最重要的数值算法”,它还被IEEE科学与工程计算期刊列入20世纪十大算法。.

新!!: 傅里叶变换和快速傅里叶变换 · 查看更多 »

分數傅立葉變換

在數學文獻中,分數傅立葉變換(Fractional Fourier transform,FRFT)指的就是傅立葉變換(Fourier Transform)的廣義化。近幾年來,分數傅立葉變換除了在信號處理領域有相當廣泛的應用,其也在數學上被單獨地研究,而定義出如分數迴旋積分(Fractional Convolution)、分數相關(Fractional Correlation)……等許多相關的數學運算。 分數傅立葉變換的物理意義即做傅立葉變換 a 次,其中 a 不一定要為整數;而做了分數傅立葉變換之後,信號或輸入函數便會出現在介於時域與頻域之間的分數域(Fractional Domain)。 若再更進一步地廣義化分數傅立葉變換,則可推廣至(Linear Canonical Transform)。.

新!!: 傅里叶变换和分數傅立葉變換 · 查看更多 »

切比雪夫多项式

切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn 或 Un 代表 n 阶多项式。 切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。 在微分方程的研究中,切比雪夫提出切比雪夫微分方程 和 相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。 这些方程是斯图姆-刘维尔微分方程的特殊情形。.

新!!: 傅里叶变换和切比雪夫多项式 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 傅里叶变换和周期函数 · 查看更多 »

傅立叶变换家族中的关系

在数学领域的谐波分析中,连续傅里叶变换(continuous Fourier transform, CFT)与傅里叶级数 (Fourier series, FS)有非常微妙的关系。而且连续傅里叶变换也与离散时间傅里叶变换(discrete time Fourier transform, DTFT)和离散傅里叶变换(discrete Fourier transform, DFT)有很近的关系。傅里叶变换家族通常就是指这四种变换。 通过利用Dirac delta函数 \delta(t) ,CFT可以应用到时间离散 (time-discrete)或时间周期(time-periodic)信号。实际上,FS、 DTFT和DFT都可以由最广泛的CFT得到。从理论上看,它们也都是CFT的特殊情况。 在信号理论和数字信号处理(digital signal processing, DSP)中,DFT扩展用于近似计算连续信号的频谱,其变换的对象只是一个采样点的有限序列,而且可以由快速傅里叶变换(fast Fourier transform, FFT)实现。.

新!!: 傅里叶变换和傅立叶变换家族中的关系 · 查看更多 »

傅里叶分析

傅里叶分析,是数学的一个分支领域。它研究如何将一个函数或者信号表达为基本波形的叠加。它研究并扩展傅里叶级数和傅里叶变换的概念。基本波形称为调和函数,调和分析因此得名。在过去两个世纪中,它已成为一个广泛的主题,并在诸多领域得到广泛应用,如信号处理、量子力学、神经科学等。 定义于Rn上的经典傅里叶变换仍然是一个十分活跃的研究领域,特别是在作用于更一般的对象(例如缓增广义函数)上的傅里叶变换。例如,如果在函数或者信号上加上一个分布f,我们可以试图用f的傅里叶变换来表达这些要求。Paley-Wiener定理就是这样的一个例子。Paley-Wiener定理直接蕴涵如果f是紧支撑的一个非零分布,(这包含紧支撑函数),则其傅里叶变换从不拥有紧支撑。这是在调和分析下的测不准原理的一个非常初等的形式。参看经典调和分析。 在希尔伯特空间,傅里叶级数的研究变得很方便,该空间将调和分析和泛函分析联系起来。.

新!!: 傅里叶变换和傅里叶分析 · 查看更多 »

傅里叶级数

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|.

新!!: 傅里叶变换和傅里叶级数 · 查看更多 »

函數極限

上表所示函數的圖形,請注意在x.

新!!: 傅里叶变换和函數極限 · 查看更多 »

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

新!!: 傅里叶变换和共轭复数 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 傅里叶变换和光学 · 查看更多 »

勒貝格積分

勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.

新!!: 傅里叶变换和勒貝格積分 · 查看更多 »

矩形函数

矩形函数的定义为, 0 & \mbox |t| > \frac \\ \frac & \mbox |t|.

新!!: 傅里叶变换和矩形函数 · 查看更多 »

离散傅里叶变换

离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。.

新!!: 傅里叶变换和离散傅里叶变换 · 查看更多 »

离散时间傅里叶变换

在数学中,离散时间傅里叶变换(DTFT,Discrete-time Fourier Transform)是傅里叶分析的一种形式,适用于连续函数的均匀间隔采样。离散时间是指对采样间隔通常以时间为单位的离散数据(样本)的变换。仅根据这些样本,它就可以产生原始连续函数的连续傅里叶变换的的以频率为变量的函数。在采样定理所描述的一定理论条件下,可以由DTFT完全恢复出原来的连续函数,因此也能从原来的离散样本恢复。DTFT本身是频率的连续函数,但可以通过离散傅里叶变换(DFT)很容易计算得到它的离散样本(参见对DTFT采样),而DFT是迄今为止现代傅里叶分析最常用的方法。 这两种变换都是可逆的。离散时间傅里叶逆变换得到的是原始采样数据序列。离散傅里叶逆变换是原始序列的周期求和。快速傅里叶变换(FFT)是用于计算DFT的一个周期的算法,而它的逆变换会产生一个周期的离散傅里叶逆变换。.

新!!: 傅里叶变换和离散时间傅里叶变换 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

新!!: 傅里叶变换和积分 · 查看更多 »

积分变换

積分變換(integral transform)是數學中作用于函数的算子,用以處理微分方程等問題。常見的有傅里葉變換﹑拉普拉斯變換等。.

新!!: 傅里叶变换和积分变换 · 查看更多 »

符号函数

號函數(Sign function,簡稱sgn)是一個邏輯函數,用以判斷實數的正負號。為避免和英文讀音相似的正弦函數(sine)混淆,它亦稱為Signum function。其定義為: -1 &: & x 0 \end \right.

新!!: 傅里叶变换和符号函数 · 查看更多 »

算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

新!!: 傅里叶变换和算子 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: 傅里叶变换和紧空间 · 查看更多 »

约瑟夫·傅里叶

让·巴普蒂斯·约瑟夫·傅里叶男爵(Jean Baptiste Joseph Fourier,),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论與振動理論,傅里叶变换也以他命名。他被歸功為溫室效應的發現者。.

新!!: 傅里叶变换和约瑟夫·傅里叶 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

新!!: 傅里叶变换和统计学 · 查看更多 »

绝对收敛

绝对收敛是数学中无穷级数和广义积分的一种性质。一个数项级数或一个积分绝对收敛当且仅当级数的每一项或者积分的函数取绝对值(或范数)後仍然收敛或可积。比如,一个实数项或复数项级数 \sum_n a_n绝对收敛当且仅当\sum_^\infty \left|a_n\right| 。某个函数f(x)的广义积分或瑕积分\int_I f(x) \mathrmx是绝对收敛的,当且仅当取绝对值或范数後的函数的积分收敛:\int_I |f(x) |\mathrmx 。一个积分绝对收敛的函数也称为绝对可积函数。 在无穷级数的研究中,绝对收敛性是一項足够强的条件,许多有限项级数具有的性質,在一般的无穷级数不一定滿足,只有在绝对收敛的无穷级数也會具有該性質。例如任意重排一个绝对收敛的级数之通项的次序,不会改变级数的和,又如,两个绝对收敛的无穷级数通项的乘积以任何方式排列成的级数和都为原来两个级数和的乘积。收敛但不是绝对收敛的无穷级数或积分被称为条件收敛的。.

新!!: 傅里叶变换和绝对收敛 · 查看更多 »

组合数学

广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.

新!!: 傅里叶变换和组合数学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 傅里叶变换和物理学 · 查看更多 »

特征函数 (概率论)

在概率论中,任何随机变量的特征函数(缩写:ch.f,复数形式:ch.f's)完全定义了它的概率分布。在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量: 其中t是一个实数,i是虚数单位,E表示期望值。 用矩母函数MX(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。 与矩母函数不同,特征函数总是存在。 如果FX是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出: 在概率密度函数fX存在的情况下,该公式就变为: 如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。 R或Rn上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。 一个对称概率密度函数的特征函数(也就是满足fX(x).

新!!: 傅里叶变换和特征函数 (概率论) · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

新!!: 傅里叶变换和狄拉克δ函数 · 查看更多 »

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

新!!: 傅里叶变换和相位 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 傅里叶变换和頻域 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 傅里叶变换和頻率 · 查看更多 »

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

新!!: 傅里叶变换和频谱 · 查看更多 »

餘弦

余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.

新!!: 傅里叶变换和餘弦 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

新!!: 傅里叶变换和角频率 · 查看更多 »

計算複雜性理論

计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。 如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。 在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。.

新!!: 傅里叶变换和計算複雜性理論 · 查看更多 »

高斯函数

斯函数的形式为 的函数。其中a、b与 c为实数常数,且a > 0.

新!!: 傅里叶变换和高斯函数 · 查看更多 »

贝塞尔函数

貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.

新!!: 傅里叶变换和贝塞尔函数 · 查看更多 »

麦格劳-希尔集团

#重定向 标普全球.

新!!: 傅里叶变换和麦格劳-希尔集团 · 查看更多 »

龐特里亞金對偶性

在數學上,特別是在調和分析與拓撲群的理論中,龐特里雅金對偶定理解釋了傅立葉變換的一般性質。它統合了實數線上或有限阿貝爾群上的一些結果,如:.

新!!: 傅里叶变换和龐特里亞金對偶性 · 查看更多 »

连续傅里叶变换

在数学中,连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子。 不严格地说,傅里叶变换就是把一个函数分解为组成该函数的连续频率谱。 在数学分析中,信号f(t)的傅里叶变换被认为是处在频域中的信号。 这一基本思想类似于其他傅里叶变换,如周期函数的傅里叶级数。(参见分数阶傅里叶变换得到概况) 假设f是一个勒贝格可积的函数。 我们定义其连续傅里叶变换F也是一个复函数: 对任意实数 \omega(这里i是虚数单位), \omega 为角频率,F(\omega)为复数,并且是信号在该频率成分处的相位和幅度。 傅里叶变换是自反映射,若 F(\omega)如上定义,f是連續的,则对于任意实数 t 每个积分前的1\over\sqrt为规范化因子。 因子的选择是主观任意的,只要满足二者的乘积为1 \over ,如上取法称为归一化常数。 另一种常见取法是前向方程和反向方程分别为1和1/2\pi。 粗略估计,数学家通常使用前者(由于对称的原因),而物理学家和工程师们则常用后者。 另外,傅里叶坐标\omega有时可用2 \pi \nu来代替,在频率\nu上积分,这种情况下,归一化常数都变为单位1。 另一个主观的常规选择是,不管前向变换中的指数是+i\omega t还是-i\omega t,只要满足前向和反向方程中指数符号相反即可。.

新!!: 傅里叶变换和连续傅里叶变换 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 傅里叶变换和阿贝尔群 · 查看更多 »

赫兹

赫兹(符号:Hz)是频率的国际单位制单位,表示内周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名的,常用于描述正弦波、乐音、无线电通讯以及计算机时钟频率等。.

新!!: 傅里叶变换和赫兹 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 傅里叶变换和量子力学 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 傅里叶变换和自然對數 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

新!!: 傅里叶变换和自然数 · 查看更多 »

金融

金融(Finance)是“資金的融通”的省略語。金,指的是黃金;融,最早指固體融化變成液體,也有融通的意思。所以,金融就是將黃金融化分開交易流通,即價值的流通。顧名思義意指融通資金、使資金融洽通達,是指在經濟生活中,银行、證券或保險業者從市場主體(例如:儲戶、證券投資者或者保險者等)募集資金,並藉貸給其它市場主體的經濟活動。從事這一業務的業者稱之為金融業者。研究有關金融的學科稱之為金融學。 从广义上说,政府、个人、组织等市场主体通过募集、配置和使用资金而产生的所有资本流动都可称之为金融。因此,不仅是金融业者,有关政府的财政,行业企业的行为、以及个人的理财都是金融的一部分。金融可以看作为资金的募集配置(籌資)、以及投资和融资(借錢買股)三类经济行为。 行业企业募集资金的方法一般可以分为以下两类:.

新!!: 傅里叶变换和金融 · 查看更多 »

週期

週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.

新!!: 傅里叶变换和週期 · 查看更多 »

週期性

週期性是定期或隔一定期間發生的量(在時間或空間),並且能用不同的上下文來印述:.

新!!: 傅里叶变换和週期性 · 查看更多 »

虚数

虛數是一种複數,可以写作实数与虚数单位 i 的乘积在電子學及相關領域內,i 通常表達電流,故改為以 j 表示虛數單位。,其中 i 由 i^2.

新!!: 傅里叶变换和虚数 · 查看更多 »

Prentice Hall

#重定向 普林帝斯霍爾.

新!!: 傅里叶变换和Prentice Hall · 查看更多 »

Princeton University Press

#重定向 普林斯頓大學出版社.

新!!: 傅里叶变换和Princeton University Press · 查看更多 »

Sinc函数

sinc函数,用 \mathrm(x)\, 表示,有两个定义,有时区分为归一化sinc函数和非归一化的sinc函数。它们都是正弦函数和单调递减函数 1/x的乘积:.

新!!: 傅里叶变换和Sinc函数 · 查看更多 »

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

新!!: 傅里叶变换和概率论 · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 傅里叶变换和欧拉公式 · 查看更多 »

正交变换

在線性代數中,正交變換是線性變換的一種。對一個由空間R^n 投射到同一空間R^n 的線性轉換,如果轉換後的向量長度與轉換前的長度相同,則為正交變換。 \|T(\mathbf)\|.

新!!: 傅里叶变换和正交变换 · 查看更多 »

正弦

在數學中,正弦(英語:sine、縮寫sin)是一種週期函數,是三角函数的一種。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为(4n+1)π/2(n为整数)时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有极小值-1。正弦函数是奇函数,其图像关于原点对称。.

新!!: 傅里叶变换和正弦 · 查看更多 »

法国

法兰西共和国(République française ),簡稱法国(France ),是本土位於西歐並具有海外大區及領地的主權國家,自法蘭西第五共和國建立以來实行单一制與半总统制,首都為歐盟最大跟歐洲最大的文化與金融中心巴黎。該國本土由地中海一直延伸至英倫海峽及北海,並由萊茵河一直延伸至大西洋,整體呈六角狀。海外领土包括南美洲的法属圭亚那及分布于大西洋、太平洋和印度洋的诸岛屿。全国共分为18个大区,其中5个位于海外。法国與西班牙及摩洛哥為同時擁有地中海及大西洋海岸線的三個國家。法國的国土面积全球第四十一位,但卻為歐盟及西歐國土面積最遼闊的國家,歐洲面積第三大國家。 今日之法国本土于铁器时代由高卢人(凯尔特人的一支)征服,前51年又由罗马帝国吞并。486年法兰克人(日耳曼人的一支)又征服此地,其于该地域建立的早期国家最终发展成为法兰西王国。法国至中世纪末期起成为欧洲大国,國力於19-20世紀時達致巔峰,建立了世界第二大殖民帝國,亦為20世紀人口最稠密的國家,現今則是众多前殖民地的首選移民国。在漫長的歷史中,法國培養了不少對人類發展影響深遠的著名哲學家、文學家與科學家,亦為文化大国,具有第四多的世界遺產。 法國在全球範圍內政治、外交、軍事與經濟上為舉足輕重的大國之一。法國自1958年建立第五共和国後經濟有了很大的發展,政局保持穩定,國家體制實行半總統制,國家經由普選產生的總統、由其委任的總理與相關內閣共同執政。1958年10月4日,由公投通過的國家憲法則保障了國民的民主權及宗教自由。法國的建國理念主要建基於在18世紀法國大革命中所制定的《人權和公民權宣言》,此乃人類史上較早的人權文檔,並對推動歐洲以至於全球的民主與自由產生莫大的影響;其藍白紅三色的國旗則有「革命」的含義。法國不僅為聯合國常任理事國,亦是歐盟始創國。該國國防預算金額為全球第5至6位,並擁有世界第三大核武貯備量。法國為发达国家,其GDP為全球第六大經濟體系,具備世界第十大購買力,並擁有全球第二大專屬經濟區;若以家庭總財富作計算,該國是歐洲最富有的國家,位列全球第四。法國國民享有高生活質素,在教育、預期壽命、民主自由、人類發展等各方面均有出色的表現,特別是醫療研發與應用水平長期盤據世界首位。其國內許多軍備外銷至世界各地。目前,法国是。.

新!!: 傅里叶变换和法国 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 傅里叶变换和振幅 · 查看更多 »

海洋学

海洋学(oceanography)是研究海洋的自然现象、性质及其变化规律,以及开发利用海洋的知识体系。它是研究海洋的地理学的分支。它涵盖了广泛的主题,包括生态系统动力学、洋流、波浪和; 板块构造和海底地质; 以及各种化学物质和物理性质在海洋内及其边界的通量。这些不同的主题反映了海洋学家融合多个学科对世界洋的进一步认识和对天文学,生物学,化学,气候学,地理学,地质学,水文科学,气象学和物理学中的过程的理解。研究了地质历史中海洋的历史。.

新!!: 傅里叶变换和海洋学 · 查看更多 »

数字信号处理

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.

新!!: 傅里叶变换和数字信号处理 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

新!!: 傅里叶变换和数论 · 查看更多 »

数据科学

数据科学(英语:Data Science),又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,数据可视化,数据仓库,以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。 数据科学技术可以帮助我们如何正确的处理数据并协助我们在生物,社会科学,人类学等领域进行研究调研。此外,数据科学也对商业竞争有极大的帮助。.

新!!: 傅里叶变换和数据科学 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

新!!: 傅里叶变换和拉普拉斯变换 · 查看更多 »

重定向到这里:

Fourier变换富里叶变换傅利葉變換傅利葉轉換傅立叶变换傅立葉轉換傅里叶分解傅里叶积分

传出传入
嘿!我们在Facebook上吧! »