目录
41 关系: 反常積分,双射,向量空间,多元正态分布,大数定律,威沙特分佈,实数,对偶空间,导数,中心极限定理,二項分佈,伯努利分布,傅里叶变换,共轭复数,勒貝格積分,矩,矩生成函數,矩阵正态分布,累积分布函数,绝对值,点积,随机变量,负二项分布,跡,连续傅里叶变换,退化分布,虛數單位,柯西分布,概率分布,概率论,概率母函数,機率密度函數,正定函數,正定矩阵,正态分布,泊松分佈,期望值,有界函数,测度,数量积,拉普拉斯分布。
- 与概率分布相关的函数
反常積分
反常积分又叫广义积分(“广义积分”为较早教科书的称呼,现在中国大陆已弃用),是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又叫无界函数的反常积分)。.
双射
數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
多元正态分布
多变量正态分布亦称为多变量高斯分布。它是单维正态分布向多维的推广。它同矩阵正态分布有紧密的联系。.
大数定律
在數學與統計學中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,樣本數量越多,則其平均就越趨近期望值。 大数定律很重要,因为它“保证”了一些随机事件的均值的长期稳定性。人们发现,在重複試驗中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。 切比雪夫定理的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。.
威沙特分佈
以統計學家约翰·威沙特為名的威沙特分佈是統計學上的一種半正定矩陣隨機分佈。這個分佈在多變量分析的共變異矩陣估計上相當重要。.
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
对偶空间
在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
中心极限定理
中心极限定理是概率论中的一组定理。中心极限定理说明,在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。.
二項分佈
在概率论和统计学中,二项分布(Binomial Distribution)是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n.
伯努利分布
伯努利分布(Bernoulli distribution,又名两点分布或者0-1分布,是一個離散型概率分布,為紀念瑞士科學家雅各布·伯努利而命名。)若伯努利試驗成功,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為1。若伯努利試驗失敗,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為0。記其成功概率為p (0p1),失敗-zh-hans:概;zh-hk:機;zh-tw:機;-率為q.
傅里叶变换
傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.
共轭复数
在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.
勒貝格積分
勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.
矩
矩有下列意義:.
查看 特征函数 (概率论)和矩
矩生成函數
动差又被称为矩。隨機變數X 的動差生成函數或矩母函数(moment-generating function)定義為: 前提是这个期望值存在。.
矩阵正态分布
矩陣常態分配(matrix normal distribution) 是一種機率分佈,屬於常態分配的之一。 機率密度函數相對於隨機矩陣(random matrix) X (n × p) 表達如下的矩陣常態分配方式 p(\mathbf|\mathbf).
累积分布函数
累积分布函数,又叫分布函数,是概率密度函數的积分,能完整描述一個實随机变量X的概率分佈。一般以大寫“CDF”(Cumulative Distribution Function)标记。 對於所有實數x ,累积分布函数定義如下:.
绝对值
絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.
点积
在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
负二项分布
負二項分布是統計學上一種離散概率分布。“负二项分布”与“二项分布”的区别在于:“二项分布”是固定试验总次数N的独立试验中,成功次数k的分布;而“负二项分布”是所有到成功r次时即终止的独立试验中,失败次数k的分布。.
跡
在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.
查看 特征函数 (概率论)和跡
连续傅里叶变换
在数学中,连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子。 不严格地说,傅里叶变换就是把一个函数分解为组成该函数的连续频率谱。 在数学分析中,信号f(t)的傅里叶变换被认为是处在频域中的信号。 这一基本思想类似于其他傅里叶变换,如周期函数的傅里叶级数。(参见分数阶傅里叶变换得到概况) 假设f是一个勒贝格可积的函数。 我们定义其连续傅里叶变换F也是一个复函数: 对任意实数 \omega(这里i是虚数单位), \omega 为角频率,F(\omega)为复数,并且是信号在该频率成分处的相位和幅度。 傅里叶变换是自反映射,若 F(\omega)如上定义,f是連續的,则对于任意实数 t 每个积分前的1\over\sqrt为规范化因子。 因子的选择是主观任意的,只要满足二者的乘积为1 \over ,如上取法称为归一化常数。 另一种常见取法是前向方程和反向方程分别为1和1/2\pi。 粗略估计,数学家通常使用前者(由于对称的原因),而物理学家和工程师们则常用后者。 另外,傅里叶坐标\omega有时可用2 \pi \nu来代替,在频率\nu上积分,这种情况下,归一化常数都变为单位1。 另一个主观的常规选择是,不管前向变换中的指数是+i\omega t还是-i\omega t,只要满足前向和反向方程中指数符号相反即可。.
退化分布
在数理统计中,退化分布(或确定性分布)是指只有一种值的分布,是一种绝对事件的分布。比如,一个六面数值均相等的骰子;一枚正反双面一模一样的硬币。尽管它并不会随机出现数字,这种分布满足随机变量的定义,因此被认为是“退化”的。 它的累积分布函数是: F(k;k_0).
虛數單位
在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.
柯西分布
柯西分布也叫作柯西-洛伦兹分布,它是以奥古斯丁·路易·柯西与亨德里克·洛伦兹名字命名的连续概率分布,其概率密度函数为 其中x0是定义分布峰值位置的位置参数,γ是最大值一半处的一半宽度的尺度参数。 作为概率分布,通常叫作柯西分布,物理学家也将之称为洛伦兹分布或者Breit-Wigner分布。在物理学中的重要性很大一部分归因于它是描述受迫共振的微分方程的解。在光谱学中,它描述了被共振或者其它机制加宽的谱线形状。在下面的部分将使用柯西分布这个统计学术语。 x0.
概率分布
概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
概率母函数
在概率论里,一个离散随机变量的概率母函数是指该随机变量的概率质量函数的幂级数表达式。.
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
正定函數
在數學上,正定函數一詞可以用來表達許多不同的概念。.
正定矩阵
在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.
正态分布
常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.
泊松分佈
Poisson分布(法語:loi de Poisson,英語:Poisson distribution),译名有--分布、--分布、--分佈、--分佈、--分佈、--分佈、卜氏分配等,又稱帕松小數法則(Poisson law of small numbers),是一種統計與概率學裡常見到的離散機率分佈,由法國數學家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年時發表。 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数、雷射的光子數分布等等。 泊松分布的概率質量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 根据泰勒展开式可得:e^.
期望值
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.
有界函数
定义在集合X上的函数称为有界的,如果它所有的值所组成的集合是有界的。也就是说,存在一个数M>0,使得对于X中的所有x,都有 有时,如果对于X中的所有x,都有f(x)\le A,则函数称为上有界的,A就是它的上界。另一方面,如果对于X中的所有x,都有f(x)\ge B,则函数称为下有界的,B就是它的下界。 一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列f.
测度
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.
数量积
#重定向 点积.
拉普拉斯分布
在概率论与统计学中,拉普拉斯分布(Laplace distribution)是以皮埃尔-西蒙·拉普拉斯的名字命名的一种连续概率分布。由于它可以看作是两个不同位置的指数分布背靠背拼接在一起,所以它也叫作双指数分布。两个相互独立同概率分布指数随机变量之间的差别是按照指数分布的随机时间布朗运动,所以它遵循拉普拉斯分布。.
另见
与概率分布相关的函数
亦称为 特性函数。