点积和特征函数 (概率论)
快捷方式: 差异,相似,杰卡德相似系数,参考。
点积和特征函数 (概率论)之间的区别
点积 vs. 特征函数 (概率论)
在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。. 在概率论中,任何随机变量的特征函数(缩写:ch.f,复数形式:ch.f's)完全定义了它的概率分布。在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量: 其中t是一个实数,i是虚数单位,E表示期望值。 用矩母函数MX(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。 与矩母函数不同,特征函数总是存在。 如果FX是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出: 在概率密度函数fX存在的情况下,该公式就变为: 如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。 R或Rn上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。 一个对称概率密度函数的特征函数(也就是满足fX(x).
之间点积和特征函数 (概率论)相似
点积和特征函数 (概率论)有1共同点(的联盟百科): 向量空间。
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
向量空间和点积 · 向量空间和特征函数 (概率论) · 查看更多 »
上面的列表回答下列问题
- 什么点积和特征函数 (概率论)的共同点。
- 什么是点积和特征函数 (概率论)之间的相似性
点积和特征函数 (概率论)之间的比较
点积有46个关系,而特征函数 (概率论)有44个。由于它们的共同之处1,杰卡德指数为1.11% = 1 / (46 + 44)。
参考
本文介绍点积和特征函数 (概率论)之间的关系。要访问该信息提取每篇文章,请访问: